informacje



czwartek, 3 sierpnia 2023

Nieoczekiwana cyklizacja

Ten przypadek pokazuje, że wiele jest jeszcze mechanizmów chemicznych, które nie przyszły nam wcześniej do głowy. Oraz, że nawet Noblista się myli, ale w tym przypadku wynikło z tego coś dobrego.


Credit: Angewandte Chemie Int Ed. 
  Duża część przydatnych związków organicznych daje się opisać jako po prostu podstawione pochodne benzenu. Nieraz podstawniki są bardzo skomplikowane, ale pomiędzy nimi jest tylko zwykły sześciowęglowy pierścień. Z tego też powodu nowe reakcje cyklizacji, pozwalające otrzymać pochodne z określonymi grupami w kontrolowanej pozycji, są zawsze w cenie. 

  Laureat Nagrody Nobla w chemii za rok 2021, Benjamin List, próbował opracować taką właśnie nową reakcję. Pomysł był interesujący. Prosty aldehyd zawierający interesującą nas grupę boczną reaguje z 1,3-cyklopentadienem, reaktywnym związkiem w formie pięciowęglowego pierścienia z dwoma wiązaniami podwójnymi. Zachodi między nimi addycja podobna do reakcji Knoevenagla. Produktem  jest fulwen, to jest związek w którym do opisanego już pierścienia dołącza się kolejne wiązanie podwójne, odchodzące zwornikowo. Powstaje więc zwarta struktura trzech blisko położonych wiązań podwójnych, która może ulegać różnym reakcjom. 
To nie było nic nowego, taką reakcję już znano.
Prototypowy fulwen



  I tu wchodził genialny pomysł noblisty. Pod wpływem światła ultrafioletowego  miało nastąpic stworzenie nowego wiązania w pięciowęglowym pierścieniu. Powstałby układ podobny trochę do domka z dziecięcego obrazka - kwadrat i trójkąt. A ze szczytu trójkąta podwójne wiązanie. Ten układ miał ulegać reakcji z katalizatorem platynowym do wytworzenia struktury z dwoma kwadratowymi pierścieniami z wiązaniami podwójnymi. A ta struktura jest już znana w chemii jako "benzen Dewara". W połowie XIX wieku trwała debata na temat struktury benzenu, w którym sześć atomów węgla łączyło się z sześcioma wodorami i nie dało się tego opisać znanymi wtedy modelami zakładającymi tylko wiązania pojedyncze między atomami. Kilku badaczy zaproponowało wtedy różne rozwiązania i Dewar zgłosił aż siedem różnych wersji, z czego jedna zawierała dwa kwadraty. Strukturę tę zsyntezowano w latach 70. kończąc dyskusje czy związek może istnieć. Jest ona nie płaska i przypomina prosty daszek:
  Dla nas i dla Lista najciekawsze jest w niej to, że ze względu na znaczne odkształcenie przekształca się ona spontanicznie w benzen, i atomy przestawiają się w taki sposób, że da się przewiedzieć w jakiej pozycji znajdą się podstawniki. Skoro więc odpowiednim przegrupowaniem zamienimy fulwen w pochodną benzenu Dewara, ta zamieni się samorzutnie w benzen "normalny" i tak mamy oczekiwaną pochodną z pierścieniem sześciokątnym. I koniec syntezy.








  Tak że patrząc na to z boku - świetny pomysł, byłoby świetnie, gdyby go zrealizować. Tak więc rozpoczęto prostą, modelową reakcję, otrzymany fulwen poddano naświetlaniu UV aby wyizolować związek pośredni do reakcji z platyną... Po czym okazało się, że większość fulwenu zamieniła się w coś zupełnie innego. 
Głównym produktem reakcji był podstawiony spiro-[2,4]-heptadien, z więc związek w którym opisywany już pierścień pięciokątny ma jeden róg wspólny z trójkątnym. 
  Sama w sobie taka struktura jest interesująca, była już znana wcześniej, ale metody jej syntezy były ograniczone do szczególnych przypadków. Tutaj musiało zajść coś intrygującego. Poprzez dalsze symulacje komputerowe a następnie drogą badania pochodnej deuterowanej rozwikłano interesujący mechanizm. 

  Po naświetleniu związku ultrafioletem, jedno z wiązań wiązania podwójnego pękało, tworząc parę wolnych rodników. Dalsze zachowanie się tych niesparowanych elektronów wynikało już z różnej trwałości rodników. Jak to wiele razy tłumaczy się studentom podczas omawiania rezonansu, rodniki alkilowe mają trwałość zależną od rzędowości. W przypadku pośredniej cząsteczki dirodnika fulwenu, jeden niesparowany elektron siedzi w wygodnym dla niego miejscu, na zworniku pierścienia pięciowęglowego, od którego odchodzi nie pęknięte jedno wiązanie. Trwałość rodnika na węglu trzeciorzędowym jest zdecydowanie większa niż dla innych przypadków.  

  Drugi niesparowany elektron siedzi w mniej wygodnym miejscu, na węglu teraz już drugorzędowym. Ale zaraz obok mamy węgiel trzeciorzędowy, w miejscu rozgałęzienia podstawnika. Następuje więc przesunięcie rodnika tam, a na jego miejsce wskakuje atom wodoru z rozgałęzienia. Taka roszada.
Powstaje więc cząsteczka z dwoma rodnikami na dwóch trzeciorzędowych miejscach, które dzięki temu mają większą trwałość. A skoro tak już się umiejscowiły, to mogą ze sobą zareagować, odtwarzając wiązanie, ale teraz już między innymi atomami. Rekombinacja niszczy stan rodnikowy i tworzy trójkątny pierścień. Wszystkie te przesunięcia są na tyle korzystne energetycznie, że końcowy spiro-heptadien powstaje z zadowalającą wydajnością dochodzącą do 70-98% w niektórych przypadkach. 









  Reakcja po ustaleniu przebiegu została przetestowana na szeregu innych związków, w tym takich, w których trójkątny pierścień cyklopentanowy ma na drugim końcu rozbudowane podstawniki lub kolejny pierścień. Otrzymywanie takich rozbudowanych pochodnych z trzema pierścieniami spiro innymi metodami nie jest takie łatwe i mało było na ten temat publikacji, więc spodziewać się teraz możemy fali kolejnych badań na temat tego typu związków, skoro pojawiła się zupełnie nowa metoda otrzymywania.

-------
* Benjamin List et.al. Toward a Formyl-to-Phenyl Conversion: An Unexpected Photochemical Fulvene Rearrangement, Angew. Chem.Int. Ed.2023, e202303119 

https://onlinelibrary.wiley.com/doi/10.1002/anie.202303119