informacje



sobota, 18 października 2014

Liście jesienne

Złota jesień w pełni, wypadałoby więc napisać, skąd to przebarwianie się liści bierze się.

Podstawowym barwnikiem nadającym liściom roślin kolor, jest oczywiście chlorofil, którego zadaniem jest transformacja energii świetlnej w chemiczną, prowadząca do fotosyntezy. Jest to ciekawy związek oparty na pierścieniu pochodnej porfiryny, z przyłączonym długim łańcuchem węglowodoru i z jonem magnezu wewnątrz pierścienia, uchwyconym przez cztery azoty w mocny kompleks.
 Ponadto w roślinach występuje w dwóch odmianach, jako chlorofil a i chlorofil b różniących się bocznymi grupami i odcieniem.
Ten długi ogon dzięki lipofilowości pozwala zakotwiczyć się cząsteczce w błonie tylakoidu, właściwego reaktywnego ciałka chloroplastu. W centrum reaktywnym odpowiedzialnym za pochłanianie i przetwarzanie energii, dwie cząsteczki chlorofilu oplecione są cząsteczką specyficznego białka. Kompleksy złożone z tych białek, chlorofilu i karotenoidów, tak zwane układy antenowe, połączone z błoną i centrum reaktywnym, tworzą fotoukład, będący molekularną maszyną rozkładającą wodę na tlen i wydzielającej chemiczne nośniki energii.
Chlorofil pochłania część światła w zakresie czerwonym i fioletowo-niebieskim, stąd wypadkowy kolor zielony, dosyć chłodny. Pochłonięcie kwantu światła powoduje wzbudzenie elektronowe cząsteczki. Zwykle w chloroplastach cząsteczki pigmentu tworzą agregaty, dzięki czemu szansa że w stosie jakaś cząsteczka pochłonie kwant jest większa. Energia tego wzbudzenia przekazywana jest skokami poprzez kilka cząsteczek aż do centrum reakcyjnego, gdzie od cząsteczki chlorofilu związanej z białkiem, odrywany jest elektron. Dzięki niemu wytwarzane są protony, jedne cząsteczki są utleniane a inne redukowane, aż wreszcie po rozłożeniu wody i wydzieleniu tlenu powstaje ATP będąca chemicznym nośnikiem tej właśnie pochodzącej od światła energii, wykorzystywane przez roślinę do przerobu dwutlenku węgla na więcej rośliny.
Oczywiście upraszczam, ale tak wygląda początkowy etap fotosyntezy, i do tego roślinom potrzebne są pigmenty.

Ale chlorofil to nie jedyny pigment w liściach. Całkiem spory udział mają też karoteny i karotenoidy, a więc cząsteczki z długim łańcuchem węglowodorowym z układem sprzężonych wiązań podwójnych. Mają kolory od żółtozielonego, przez żółty do pomarańczowego jak marchew, w której korzeniu wszakże występują. To one powodują, że kolor liści jest soczystszy i jaśniejszy - oba chlorofile same w sobie mają raczej chłodny odcień.
Dla rośliny karoteny w pewnym stopniu uzupełniają wady chlorofilu, który pochłania trochę światła czerwonego i trochę niebieskiego, zaś pomiędzy tymi zakresami zieje szeroka dziura mieszcząca w sobie światło zielone, którego w widmie słonecznym jest najwięcej.
Różne roślinne karotenoidy pochłaniają też światło z tego szerokiego zakresu:

Każdy taki barwnik po pochłonięciu kwantu światła przechodzi na krótko w stan wzbudzony. Jeśli będzie zawieszony w roztworze to albo wytraci energię poprzez ciepło, albo wypromieniuje jako światło, a wiele karotenów może też zmienić konfigurację cząsteczki.
Inaczej jest jednak, gdy karotenoid znajdzie się tuż przy cząsteczce chlorofilu w centrum reakcyjnym fotosyntezy - może wtedy nastąpić bezpromieniste przekazanie energii i jej wykorzystanie. Dzięki temu z jednej strony rośliny rośliny mogą lepiej wykorzystać energię światła, a z drugiej mogą przy pomocy wolnych karotenów chronić się przed nadmiernym naświetleniem.

Co takiego dzieje się jesienią? Drzewa i rośliny wieloletnie wycofują z liścia cenne składniki, głównie cukry i aminokwasy. Chlorofil zimą jest niepotrzebny, dlatego nie ma potrzeby dalej go produkować. Przez cały rok w liściach działają zarówno enzymy wytwarzające chlorofil jak i enzymy degradujące, zahamowanie produkcji powoduje, że te drugie z czasem, powoli, rozłożą chlorofil na cząsteczki bezbarwne. Reakcja zaczyna się od uszkodzenia białkowego kompleksu. Potem chlorofil jest odłączany od swego "ogona" przez hydrolizujący enzym chlorofilazę. Powstający chlorofilid ma nieco słabszą, ale wciąż zieloną barwę. Potem z kompleksu usuwany jest magnez, tworząc feoforbid o szarozielonkawej barwie. Na koniec ostatni enzym utlenia cząsteczkę, rozrywając pierścień, tworząc bezbarwny produkt końcowy.

Co to powoduje?
Z liści znika zieleń, i ujawniają się dotychczas niewidoczne karoteny i karotenoidy, a liście stają się żółte i pomarańczowe. To one odpowiadają za złoty kolor. W tym miejscu rodzi się więc pytanie - a skąd czerwień?

Za czerwony kolor liści odpowiadają antocyjany, barwniki, które muszą zostać specjalnie wytworzone. Jest to grupa barwników roślinnych odpowiadających za kolor wielu owoców, w tym truskawek, czarnych jagód, a także czerwonej kapusty. Zastanawiające jest natomiast, po co roślinom wytwarzać czerwony barwnik w liściach, z których właśnie wycofywane są składniki odżywcze, i których przeznaczeniem jest odpaść od rośliny.

W pewnym stopniu antocyjany są obroną rośliny przed nadmiernym nasłonecznieniem. Powstają w młodych listkach, dopiero co wychylających się z pąków, ale potem zanikają. Następnie pod koniec lata zaczynają być wytwarzane ponownie, głownie w szczytowych liściach. To dlatego u wielu drzew i krzewów liście na samym szczycie, na które pada najwięcej słońca, zaczerwieniają się na brzegach. W podobny sposób zaczerwieniają się rośliny zielne w szczycie okresu letniego.
Niemniej nie dotyczy to jesieni, gdy słońca jest już mało.
Być może w jakimś stopniu ułatwiają roślinie wycofanie pewnych składników w okresie chłodów, ale jak się wydaje głównym powodem czerwienienia jesiennych liści jest ochrona przed owadami. Jak wykazały badania na krzewach różnych odmian, te o liściach zielonych są częściej atakowane przez mszyce i inne szkodniki niż te o liściach czerwonych cały rok. Warto przy tym pamiętać, że jesienią, wiele szkodników stara się przygotować na zimę, toteż bądź składają jajeczka, bądź hibernują w warstwie liści, i robią to w pobliżu zaatakowanego drzewa. Oznacza to, że drzewa które swym kolorem odstraszyły szkodniki jesienią, będą mniej atakowane wiosną. Dlatego opłaca im się specjalnie wytworzyć czerwony barwnik, który pozostanie w liściach nawet gdy opadną.

A teraz przypomnę chromatografię, aby pokazać jak wyglądają wszystkie barwniki zawarte w liściach, gdy są jeszcze zielone:
Żółta plamka na samej górze, to karoteny. Szare pasmo poniżej to feofityny, produkt rozpadu chlorofilu, niżej są żółtawe ksantofile, następnie ciemnozielony chlorofil b i jaśniejszy chlorofil a. na samym dole ślady innych produktów rozpadu chlorofilu.

------
Źródła:
* http://en.wikipedia.org/wiki/Chlorophyll
* http://en.wikipedia.org/wiki/Photosystem
* http://en.wikipedia.org/wiki/Anthocyanin
* http://en.wikipedia.org/wiki/Autumn_leaf_color
*http://en.wikipedia.org/wiki/Chlorophyllase

niedziela, 28 września 2014

Inne ciekawe związki w grzybach

Szukając materiałów do poprzedniego wpisu natykałem się także na inne informacje o chemii grzybów, które były dla mnie ciekawe, ale nie miały związku ze zmianą zabarwienia. Aby więc nie rozwlekać wtrąceniami, postanowiłem napisać osobno o tych kilku ciekawych przypadkach.

Będzie więc grzyb o zapachu curry, grzyb który leczy, porost do farbowania wełny i grzyb który za bardzo lubi pewien pierwiastek.

Lakmus
Znany początkującym chemikom papierek lakmusowy, nasączany jest jak łatwo zgadnąć lakmusem. Mało kto wie jednak, że jest to substancja naturalna, w dodatku otrzymywana z porostów. Porost Roccella tinctoria, porasta skały na wybrzeżu Atlantyku mając formę zwisającego krzaczka, trochę podobnego do chrobotka, ale o spłaszczonych gałązkach przypominając też kępkę wyschniętej trawy morskiej. Już w starożytności używany był do farbowania wełny na piękny, czerwonofioletowy kolor, stanowiąc zastępstwo dla drogiej purpury tyryjskiej. Przez pewien czas porost stanowił główne źródło utrzymania kolonii na Azorach, a dzięki uprawom zaczął występować  wielu nowych krajach.

Chemicy oczywiście zainteresowali się jego własnościami, zwłaszcza iż dobrze znany był fakt, że w alkalicznych roztworach farbierskich przybierał kolor zielononiebieski, a wełna zabarwiała się zwykle na czerwono lub fioletowo. Szybko wykazano, że jest barwnikiem zmieniającym kolor od czerwonego w roztworach kwaśnych do niebieskiego w zasadowych. Mimo raczej nie zbyt szerokiego zakresu zmienności, od 4,5 do 8,2 pH, zaczął być używany jako wskaźnik. Zwykle nasącza się nim papier w dwóch odmianach: w alkalicznej, niebieskiej, służącej do wykrycia odczynu kwaśnego, i w sprotonowanej czerwonej, służącej do wykrycia zasad. Był w tym celu używany już tak dawno, że przeszedł do języka potocznego, jako określenie "oznaki własności" w odniesieniu do osób i zjawisk (rumieniec speszonej panny jest lakmusowym papierkiem niewinności).

Wyciąg z lakmusa jest pod względem chemicznym dość skomplikowaną mieszanką ponad dwudziestu związków, głównie pochodnych związków fenolowych z silnym chromoforem orseliną (7-hydroksyfenoksazon) decydującym o intensywności koloru. Kilka z tych związków wyodrębniono i nazwano, jak choćby beta hydroksyorselina:

Lakmus bywa używany jako barwnik spożywczy E 121. Podobne barwniki zawierają rosnące w Polsce porosty z rodzaju Tarczownic. [1], [2]

Wanadowy muchomor
Muchomor czerwony i kilka innych gatunków zwracają uwagę intensywnie czerwonym kolorem kapelusza. Odpowiada za to kilka barwników, głównie betaksantyny znane też jako barwniki buraka i aramantusa, a także muskaflawina (muscaflavin) będąca związkiem z siedmiokątnym pierścieniem
Bardziej interesujący jest jednak związek wykryty i w kapeluszu i w miąższu, nietypowe połączenie metaloorganiczna amawadyna (amavadin) , w której jeden jon wanadu jest połączony przez osiem koordynacji z dwiema cząsteczkami liganda hydroksyloiminodwupropionowego:
Za sprawą takiego połączenia muchomory akumulują wanad w ilościach nawet 400 razy większych niż gleba w której rosną. Zagadką pozostaje natomiast po co jest to grzybowi potrzebne. Możliwe że kompleks pełni rolę jaką w roślinach i u zwierząt pełnią peroksydazy, to jest chroni przed uszkodzeniem od wolnych rodników. Związek może być też wykorzystany w syntezie jako katalizator selektywnego utleniania nadtlenkami. [3],[4]

Uszak bzowy - grzyb leczniczy
Uszak bzowy to nie zbyt smaczny grzyb, zbudowany z galaretowatej substancji podobnej do chrząstki . Występuje cały rok, wyrastając na martwych gałązkach drzew i krzewów, chętnie zwłaszcza na bzie czarnym, sprzyjają mu chłodne warunki dlatego zbiera się go późną jesienią a nawet zimą, bo wystarczy mu kilka dni roztopów.
Jego bliskim krewniakiem jest spożywany w Azji uszak gęstowłosy, znany jako grzyb Mun.
W kulturze Europy przyjęło się nazywać uszaka "judaszowym uchem" lub "uchem żyda", takie jest zresztą dosłowne tłumaczenie nazwy łacińskiej.
Jako grzyb bez smaku był raczej dodatkiem do sosów, a ususzony i roztarty jako zagęstnik chłonący wodę dodawany był do zup. W średniowieczu był też polecany na ból gardła, przeziębienia i zapalenia. Dopiero w nowszych nam czasach pod wpływem wieści o Japończykach, uważających azjatycki gatunek za grzyba leczniczego, postanowiono przyjrzeć się właściwościom europejskiego krewniaka.

Głównym składnikiem owocnika są polisacharydy o właściwościach żelujących, ale niektóre z nich mają dodatkowe działanie biologiczne - mogą obniżać poziom cukru we krwi, poziom cholesterolu, działać przeciwzakrzepowo a niektóre badania sugerują działanie przeciwnowotworowe.[5] Więc kto wie - może niedługo będziemy się leczyć grzybami?

Mleczaj kamforowy - grzyb curry
Mleczaj kamforowy to średnio smaczny grzyb jadalny, wyróżniający się zapachem, niektórym przypominającym kamforę, innym curry, zaś źródła anglojęzyczne kojarzą go z syropem klonowym. Zapach po wysuszeniu staje się bardziej ziołowy i podobny do lubczyku, dlatego grzyb często jest po ususzeniu używany jako przyprawa.

Skąd jednak ten zapach? Na początku lat 80. student De Shazer zadał to pytanie mykologowi Williamowi Woodowi. Ten nie znając odpowiedzi, zaproponował mu to jako temat badań. Student wydzielał substancje zapachowe z grzyba, ale nie mógł znaleźć związku, z którego powstawał właściwy aromat. Gdy ukończył studia, zaintrygowany sprawą Wood zaproponował temat kolejnemu studentowi. Potem następnemu i jeszcze jednemu. Po upływie 27 lat i wymianie pięciu studentów chemia grzyba była już dobrze poznana, ale nadal nie udawało się wykryć jaki związek w grzybie zamienia się w składniki aromatu, ani jak to następuje.
Próbowano kolejno zwykłej ekstrakcji, chromatografii cieczowej i gazowej, lecz utrudnieniem był skomplikowany skład wyciągów i brak możliwości zbadania struktury podejrzanych pików. W dodatku poszukiwany związek najwyraźniej szybko ulegał przemianie i występował w preparatach w małej ilości.
Wreszcie Wood zastosował technikę mikroekstrakcji do fazy stałej.
Jest to ciekawa technika wstępnego wyodrębniania z próbek frakcji o niskim stężeniu. Do próbówki z badaną mieszaniną wpuszcza się szklaną igłę z której wysnuwa się absorbujące włókno. Pochłania ono substancje o określonych właściwościach, a więc polarne lub niepolarne, znajdujące się bądź w roztworze bądź w powietrzu nad lekko ogrzaną próbką. Pochłaniane substancje są zagęszczane we włóknie i oddzielane od reszty, dzięki czemu mieszanka w próbce wprowadzanej do chromatografu ma zdecydowanie mniej skomplikowany skład, ponadto z uwagi na małe rozmiary włókna, badane mogą być mikroskopijne ilości substancji.

Dzięki nowej technice, i zestawowi GC-MS z detektorem określającym strukturę, udało się znaleźć brakujący element - pierwszy związek, którego przemiana prowadza do powstania aromatu. Był to kwabalakton III (quabalactone III), pochodna furanu znaleziona wcześniej w kwiatach meksykańskiego drzewa Qararibea, używanego do aromatyzowania tradycyjnej wersji czekolady i ozdoby domów.
Związek jest pochodną aminofuranonu i powstaje w wyniku laktamizacji wolnych aminokwasów, zwłaszcza podczas suszenia. W kontakcie z wilgocią ulega przemianie do silnie aromatycznego sotolonu:

Sotolon jest składnikiem zapachu kozieradki, i wraz z nią przyczynia się do zapachu curry.  Występuje też w lubczyku (przyprawa maggi). Zapach ziołowy w większej ilości, w małej staje się słodkawy i podobny do syropu klonowego lub palonego cukru - występuje zresztą w tych produktach  na skutek przemian fruktozy. Związek jest też składnikiem zapachu Sherry oraz francuskiego żółtego wina jako skutek metabolizowania przez drożdże kwasu alfa-ketomasłowego, stąd używana czasem nazwa "lakton vin-jaune".
Powolne powstawanie sotolonu w mleczaju kamforowym sprawia, że suszony grzyb długo zachowuje aromat - Wood znajdował go nawet w 25-letnich próbkach. Za współautorów pracy o odkryciu uznał wszystkich pięciu studentów, którzy pracowali nad tym grzybem.[6][7][8]

Podgrzybek cezowy
W czasie badań napromieniowania żywności po katastrofie w Czarnobylu, polscy badacze zwrócili uwagę na pospolitego pogrzybka brunatnego, który wykazywał zaskakująco wysokie stężenia radioaktywnego cezu. W próbkach grzyba mogło być tego pierwiastka nawet piętnaście razy więcej niż w glebie na której rósł.
Dokładniejsze badania wskazały, że ta kumulacja jest wynikiem obecności w grzybie polifenolu norbadionu A, będącego brązowym pigmentem mającym wyjątkową skłonność do tworzenia kompleksów z cezem.

 Połączenia te są bardzo trwałe a selektywność wiązania porównywalna jest z eterami koronowymi.[9] Związek ten ma zresztą przy okazji własności przeciwutleniacza a także w pewnym stopniu chroni komórki przed uszkodzeniem od promieniowania, ponieważ zaś mimo wszystko stwierdzone w Europie stężenia cezu nie były groźne, grzyba można spokojnie spożywać.[10]

-------
 Źródła:
[1]  http://de.wikipedia.org/wiki/Lackmus
[2]  http://taxusbaccata.hubpages.com/hub/Dye-Plants-II-The-Atlantic-Purple-Wonder-Archil-lichen-Roccella-tinctoria
[3] Florian Stintzinga, and Willibald Schliemann, Pigments of Fly Agaric (Amanita muscaria), Z Naturforsch C. 2007 Nov-Dec;62(11-12):779-85.
[4]  José A.L. da Silva , João J.R. Fraústo da Silva, Armando J.L. Pombeiro, Amavadin, a vanadium natural complex: Its role and applications, Coordination Chemistry Reviews Volume 257, Issues 15–16, August 2013, Pages 2388–2400
[5]  http://en.wikipedia.org/wiki/Auricularia_auricula-judae
[6]  http://now.humboldt.edu/news/student-question-about-mushrooms-maple-syrup-odor-takes-27-years-to-answer/
[7] http://openagricola.nal.usda.gov/Record/IND44732722
[8] http://media.bostonmycologicalclub.org/pdf/Bulletin/Final612Bulletinsequence.pdf
[9] Kuad P, Schurhammer R, Maechling C, Antheaume C, Mioskowski C, Wipff G, Spiess B. (2009). "Complexation of Cs+, K+ and Na+ by norbadione A triggered by the release of a strong hydrogen bond: nature and stability of the complexes". Physical Chemistry Chemical Physics 11 (44): 10299–310.
[10] http://en.wikipedia.org/wiki/Norbadione_A

czwartek, 25 września 2014

Dlaczego grzyby sinieją?

Kiedyś wspomniałem o tym we wpisie na temat herbaty, widząc jednak rosnącą ilość wyszukiwań przez które czytelnicy znajdują bloga, wychodzę naprzeciw oczekiwaniom.

Przebarwianie się grzybów pod wpływem uszkodzenia czy rozkrojenia, jest zjawiskiem częstym. Zazwyczaj spotykamy się z nim u Podgrzybków i Borowików oraz innych gatunków rodzaju Boletus, obserwuje się też przebarwianie się białego soku Mleczajów. Dlatego może nas zastanowić skąd się to bierze i czy można w ten sposób odróżnić grzyb jadalny od trującego?
No, niestety zarówno pierwsza jak i druga sprawa, nie są takie proste...

To co pospolicie nazywamy grzybem, stanowi jedynie naziemną, wypuszczaną co pewien czas część grzybicznego osobnika, kryjącego się w ziemi lub drewnie w postaci pleśniowatych strzępków. Owocnik ten, spleciony z twardej tkanki, ma za zadanie rozsiewać zarodniki tworzące się zwykle pod "okapem" kapelusza i uwalniane do powietrza, aby wraz z wiatrem dotrzeć na znaczne odległości. Inne grzyby pomagają sobie wstrzykując zawiesinę zarodników do powietrza, jak choćby pospolite purchawki. Jeszcze inne wykorzystują owady, przyciągane nie miłą wonią padliny i odchodów.
Owocniki te jednakowoż nie po to są produkowane przez grzybnię, aby je jakieś dwunożne zwierzę wycięło kozikiem i zeżarło, toteż grzyby utrudniają mykożercom zadanie bądź maskując się powierzchnią kapelusza podobną do zbrązowiałych liści, bądź wytwarzając rozmaite substancje zniechęcające czy trujące.

Jednym ze sposobów zniechęcenia zwierzęcia jest brunatnienie w miejscach uszkodzonych - pociemniały owocnik wygląda mniej atrakcyjnie - stąd też wiele gatunków grzybów wykazuje tego typu zmiany barwy. Interesujące jest przy tym co właściwie zmienia barwę i w jaki sposób.

Uszkodzenie tkanki grzyba powoduje uwolnienie z wnętrza komórek enzymów degradacyjnych, wśród nich także oksydazę fenolową. Zgodnie z nazwą wywołuje ona utlenienie związków fenolowych. Powstające chinony mają zwykle ciemniejszy kolor. Ponadto połączenie chinonów z pierwotnymi polifenolami tworzy kompleksy z przeniesieniem ładunku, mające bardzo żywe kolory. Wszystkie te efekty wywołują zmianę barwy na niebieską, granatową czy wręcz czarną, ale czasem też czerwoną lub fioletową. Wszystko zależy od tego jakie polifenole są zawarte w danym grzybie.
Podobną przyczynę ma przy okazji brązowienie ziemniaków.
Rekcja zachodzi dosyć szybko:

 

Borowikowe
Rodzina borowikowatych jest bardzo obszerna i obfituje w grzyby smaczne i jadalne. Należą tu borowiki jak i podgrzybki (w nowszej klasyfikacji uznaje się że podgrzybki należą do tego samego rodzaju co borowik i nie stanowią osobnej grupy), ale też koźlarze, maślaczki, złotaki i bardzo nie lubiane goryczaki. Są to grzyby o rurkowatym spodzie kapelusza, podobnym do powierzchni gąbki.

Głównym czynnikiem barwiącym jest w nich brunatna atromentyna i , kwas wariegatowy (variegatic acid) będący pomarańczowym pigmentem, czy powstające z utlenienia atromentyny kwas pulwinowy i kwas wulpinowy (pulvinic acid i vulpinic acid - nazwy są przy okazji anagramami), oraz ich pochodne jak lakton pulwinon, odpowiedzialny za kolor kapelusza maślaka żółtego.
Po uszkodzeniu tkanek, ulegają one dalszemu utlenieniu, przykładowo z podobnych kwasu wariegatowego i kserokomowego (a może borowikowego?) przez utlenianie enzymatyczne powstają niebieskie chinony, a bez enzymu z tego pierwszego powstaje czerwona wariegatorubina[1] :

Wariegatorubina powstaje na przykład w zewnętrznych tkankach grzybów, przyczyniając się do ciepłego odcienia brązowego kapelusza, czy rudego podbarwienia trzonu niektórych podgrzybków. Nie znalazłem natomiast informacji co odpowiada za ciemnoczerwone przebarwienie miąższu trującego borowika szatańskiego.

Do borowików bardzo podobny jest też Piaskowiec, przy czym dla mnie interesujący jest jadalny piaskowiec modrzak, po przekrojeniu zabarwiający się na dość wyraźny niebieski kolor

 Za kolor odpowiada w tym przypadku inny polifenol gyrocyjanina (gyrocyanin) o budowie podobnej do bifenyli, utleniana do jonu chinonu[2]:


Wymienione polifenole oprócz wpływu na kolor grzyba, miewają też ciekawy wpływ biologiczny - wspomniany pulwinon i jego pochodne mają działanie cytostatyczne, mogą stanowić nowe antybiotyki, ale też leki przeciwgólowe i przeciwzapalne, kwas wariegatowy to silny przeciwutleniacz.

Mleczaje
Mleczaje to rodzaj grzybów należących do rodziny gołąbkowatych. Ich charakterystyczną cechą jest mleczko wypływające z uszkodzonych miejsc, czasem zabarwione i dodatkowo zmieniające kolor podobnie jak miąższ. Przykładowo ceniony mleczaj rydz ma pomarańczowe mleczko nie zmieniające koloru i zieleniejący miąższ, lekko trujący mleczaj złocisty ma biały miąższ i mleczko, które po kilku sekundach robi się żółte.

Ich głównymi związkami barwnymi są seskwiterpenoidy zawierające cząsteczkę azulenu, ciekawego węglowodoru aromatycznego, będącego połączeniem pierścienia pentenu i heptatrienu. Cząsteczka ta nadaje im żywe barwy. Przykładowo w mleczaju czerwieniejącym, sączącym po przekrojeniu krwiste mleczko, głównym barwnikiem jest czerwona laktarowiolina (lactaroviolin) będąca aldehydem
Mleczaj świerkowy ma mleczko początkowo pomarańczowe, jednak w ciągu pół godziny staje się ciemnoczerwone by na koniec przy wysychaniu stać się zielonkawe.
Co ciekawe mleczko tego grzyba zawiera zielonkawy laktarofulwen i niebieski laktarazulenen, tych jednak początkowo nie widać. Zmiany koloru są związane z enzymatyczną przemianą nietrwałych estrów pomarańczowego dihydroazulen-1-olu, o dużej intensywności barwy, z których uwalniany jest wolny azulenol o słabszym, żółtym kolorze. Ten ulega dalszemu utlenieniu, enzymatycznemu lub nie, do pochodnych jak fioletowa laktarowiolina, żółtawy delicial czy niebieski deterrol. Mieszanka tych pochodnych, z przewagą laktarowioliny tworzy bordowy kolor. Z czasem nie żółty delicial i azulenol polimeryzują do utworzenia zielonych produktów, które wraz z cały czas obecnym niebieskim laktarazulenem dają w efekcie brudnozielony kolor wysychającego mleczka.[3]

W zasadzie tymi reakcjami można tłumaczyć wszystkie zmiany barwy. Jeśli mleczaje nie zawierają estrów azulenolu, to ich mleczko jest białe i nie zmienia koloru, jak to ma miejsce u mleczaja modrzewiowego. Jeśli je zawierają bez innych azulenów i zawierają enzym je rozbijający, to białe mleczko żółcieje, jak u mleczaja złotawego. Jeśli zawierają inne azuleny, to mleczko jest pomarańczowe i z czasem może zielenieć, jak u mleczaja rydza. Jeśli zawierają estry azulenolu i enzym je rozbijający oraz drugi enzym utleniający, to pomarańczowy sok z czasem czerwienieje, jak u mleczaja jodłowego. A jeśli zawierają estry, enzym hydrolizujący i enzym utleniający o małej aktywności, to mleczko żółcieje, czerwienieje i zielenieje.
Mam wrażenie że przydałoby się zrobić z tego tabelkę kolorów.

Omówione seskwiterpenoidy oprócz koloru, nadają też grzybom smak, często palący. Są dla grzyba obroną przed nadgryzającymi owadami, zalewanymi lepkim mleczkiem, choć często nie przeszkadza to ich larwom. Ponieważ mają budowę podobną do hormonów roślinnych, mogą być użyte do przyspieszenia kiełkowania lub do ukorzeniania roślin. Niektóre mogą przydać się jako antybiotyki, inne są testowane jako potencjalne środki przeciwnowotworowe

Próby barwne
 Fakt występowania w grzybach różnych substancji barwnych, stał się podstawą dla prób chemicznych, opierających się na traktowaniu kawałków grzybów różnymi odczynnikami. Ma to znaczenie właściwie raczej dla specjalistów, pozwalając odróżniać podobne gatunki, nie ma natomiast zbyt wielkiego dla przeciętnych grzybiarzy.
Najczęściej stosowanym odczynnikiem jest roztwór wodorotlenku potasu. Ma on za zadanie wywołać zmianę barwy polifenoli o właściwościach wskaźników kwasowości i jest używany głównie do podgrzybków, w mniejszym stopniu do pieczarek. W podobnym celu stosuje się wodny roztwór amoniaku. często stosowany jest też roztwór siarczanu żelaza II tworzący z polifenolami mocno zabarwione kompleksy.
Testy te pozwalają na odróżnienie zbliżonych do siebie gatunków, ale nie mają znaczenia dla zwykłego grzybiarza. Mleczaj chrząstka czy mleczaj piekący to tak czy siak niejadalny grzyb, nawet jeden inaczej reaguje z odczynnikiem.

Pewną wartość w wątpliwych przypadkach może mieć natomiast test Meixnera wykrywający toksyny muchomora, na przykład sromotnikowego. Wykonuje się go stosunkowo prosto, jeśli oczywiście ma się pod ręką odczynnik. Kawałek grzyba kładzie się na papierze gazetowym, tak aby papier nasączył się sokiem z miąższu. Potem na ten kawałek daje się kroplę mocnego kwasu solnego i lekko ogrzewa, na przykład suszarką do włosów. W razie obecności trucizny po kilku minutach papier zabarwia się na zielonkawo-niebiesko.

Zasada działania jest ciekawa - papier na którym drukuje się gazety (ten nielakierowany) jest robiony z pulpy z której nie oddzielono ligniny. Taki papier lepiej przyjmuje tusz, ale też szybciej żółknie i kruszy się. Lignina składa się z mieszaniny cząsteczek aromatycznych i fenolowych. Pod wpływem mocnego kwasu solnego, reaguje z toksyną tworząc konglomeraty o kolorze niebieskawym. Testu nie można robić na słońcu. Wykrywa podobne do siebie amatoksyny, związki łączące pierścień peptydu z aminą z grupą indolową:
Występują w grzybach z rodzajów muchomor, czy hełmówka, oraz niektórych czubajeczkach, wywołując po spożyciu ciężkie uszkodzenie wątroby. Grupa indolowa ulega podczas testu podstawieniu przez polifenole ligniny, tworząc związki o silniejszym kolorze.[4]
Test mógłby przydać się chociażby smakoszom, chcącym spróbować jadalnych gatunków muchomora, na przykład bardzo cenionego muchomora cesarskiego czy smacznego muchomora żółtego.

Test ten może dawać fałszywe wyniki w przypadku kilku grzybów niejadalnych, a także w przypadku grzybów zawierających psylocybinę, z ugrupowaniem indolowym w cząsteczce. Powoduje to, że miłośnicy podobnych używek próbują stosować ten test do rozpoznawania grzybów halucynogennych. Ponieważ jednak większość grzybów dających tą reakcję, to grzyby trujące, zwłaszcza hełmówki wyglądające identycznie jak niektóre łysiczki, w Ameryce notuje się rocznie po kilka zgonów z powodu pomyłki tą drogą.
W ogóle niebieszczenie grzybów jest przez wielu uważane za oznakę halucynogenności. Może to wynikać stąd że jeden z najpopularniejszych takich grzybów ma niebieski kolor. Mit ten jest tak powszechny i silny w wielu krajach, że szukając czegoś na temat "bluing mushrooms" nie mogłem znaleźć nic innego jak tylko setki stron o grzybkach rekreacyjnych. Nawet gdy dopisywałem nazwę konkretnego, jadalnego grzyba to i tak wyskakiwały mi fora używkowe, na których nastolatki rozprawiały o tym, czy jeśli podgrzybek sinieje to czy wywołuje halucynacje "jak wszystkie niebieskie grzyby".

Farbowanie grzybem?
W poszukiwaniu informacji natknąłem się na ciekawy wątek. Jednym z rodzajów hobbystycznego rękodzieła jest samodzielne farbowanie tkanin. Znani są zapaleńcy stosowania urzetu, są zapaleńcy testowania na bawełnie wywaru z kory olchy, liści brzozy czy marzanki, natomiast mało znani są eksperymentatorzy próbujący farbować tkaniny grzybami i porostami.[5] A wygląda na to że potrafią osiągać na prawdę ciekawe efekty kolorystyczne:


Test na trującego grzyba?
Niestety w naszym kraju jest tak, że więcej osób grzyby zbiera niż się na nich zna. I gdy potem w domu pojawią się wątpliwości, ludzie próbują rozpoznać grzyba na podstawie zasłyszanych mitów, co czasem kończy się tragicznie. Mity tego rodzaju mają jedną wspólną cechę - opierają się na przekonaniu że wszystkie grzyby trujące mają jakąś wspólną cechę, którą można poznać wizualnie lub w inny sposób przed zjedzeniem. Tak powstają zasady w rodzaju "wszystkie trujące grzyby mają X". Tylko że grzyb od grzyba się różni.
Do najpopularniejszych należy przekonanie, że grzyba trującego nie zjadają ślimaki. Akurat to nie jest prawda, niektóre trujące grzyby zjadają nawet chętniej niż jadalne. Ślimak ma inny metabolizm i na niego pewne trucizny mogą nie działać.
Inny mit to przekonanie, że od wszystkich trujących grzybów czernieje srebro. Bierze się zapewne z podobnego mitu na temat trucizn roślinnych, mogącego mieć pewne uzasadnienie w przypadku trucizn zawierających w składzie siarkę. Grzyby niestety są w siarkę raczej ubogie a ich substancje toksyczne ze srebrem nie reagują.
Nie lepiej jest z próbowaniem na smak - na pewno można tak rozpoznać goryczaka żółciowego, który zresztą nie jest trujący tylko okropnie smakuje, ale wiele grzybów trujących nie ma niemiłego, czy palącego smaku. Sromotnik jest podobno nawet słodkawy i ma przyjemny aromat. Czubajeczka czerwonobrązowawa ma owocowy aromat i niewyczuwalny smak.

Zasadniczo najlepiej jest zbierać grzyby które się zna i nie eksperymentować.

-------
* http://www.grzyby.pl/slownik-odczynniki.htm
* http://www.mushroomexpert.com/macrochemicals.html
* Jan VELÍŠEK, Karel CEJPEK, Pigments of Higher Fungi: A Review, Czech J. Food Sci.
Vol. 29, 2011, No. 2: 87–102
* http://mycopigments.com/

[1]  Bluing Components and Other Pigments Boletes, Stephen F. Nelson
[2]  Helmut Besl, Andreas Bresinsky, Wolfgang Steglich, Klaus Zipfel, Pilzpigmente, XVII. Über Gyrocyanin, das blauende Prinzip des Kornblumenröhrlings (Gyroporus cyanescens), und eine oxidative Ringverengung des Atromentins, Chemische Berichte Volume 106, Issue 10, pages 3223–3229, Oktober 1973
[3]  http://de.wikipedia.org/wiki/Fichten-Reizker
[4] http://www.mykoweb.com/TFWNA/P-17.html
[5] http://mushroom-collecting.com/mushroomdyeing.html

poniedziałek, 15 września 2014

Ile pierwiastków występuje w przyrodzie?

Proste pytanie i nieprosta odpowiedź - ile pierwiastków występuje w przyrodzie? Z pewnością obiło się wam ono o uszy na lekcjach chemii. Wydaje się proste - rzut okiem na tablicę Mendelejewa. Pierwiastki sztuczne zaczynają się po uranie. Uran ma numer 92 więc tyle jest tych występujących w przyrodzie pierwiastków. I tak często traktują rzecz rozmaite strony a nawet podręczniki szkolne. Tylko że to nie jest tak łatwo powiedzieć ile.

In minus
Od tych 92 pierwiastków zwykle całościowo pojmowanych jako "niesztuczne" trzeba oczywiście odjąć dwa otrzymane sztucznie, mianowicie technet i promet.
Technet o liczbie atomowej 43 jest dość pechowy, bo jest najlżejszym niestabilnym pierwiastkiem. Najdłużej żyjący izotop 98-Tc ma czas półtrwania ok. 4 miliony lat co oznacza że po kilkuset milionach lat cała ilość jaka mogła być zawarta w pierwotnej materii z jakiej powstała Ziemia już się rozpadła. Dlatego po bezowocnych poszukiwaniach w minerałach, technet otrzymano w 1937 roku, napromieniowując neutronami molibden.
Nietrwałość technetu jest wynikiem złożenia się dwóch zasad rządzących trwałością jąder. Jądra o nieparzystej liczbie protonów są mniej trwałe. Ponadto liczby masowe izotopów nie są całkiem niezależne dla kolejnych pierwiastków - u sąsiadujących pierwiastków nie mogą być trwałe izotopy o takich samych masach. W przypadku technetu o nieparzystej liczbie neutronów, jedyną masą w której powinien zachować równowagę jest 98 u, ponieważ jednak trwałe izotopy o tych masach mają molibden i ruten po dwóch stronach technetu w okresie, ten izotop nie może być trwały.
Drugim takim pechowcem jest promet o liczbie atomowej 61, też nieparzystej, którego najtrwalszy izotop ma czas półtrwania 17,7 lat.

In plus
Z drugiej strony należy zastanowić się, co to właściwie znaczy "występuje w przyrodzie" - chodzi o tylko to że dało się go wykryć w warunkach naturalnych, czy może o ilości które dają się wyodrębnić? Bo przy tej pierwszej definicji listę "występujących w przyrodzie" można znacznie rozszerzyć.
W rudach uranu w wyniku spontanicznego rozszczepu jądra wykrywa się technet, zwłaszcza w rudzie z pewnego złoża w Kongu w ilości 0,2 ng/kg. W rudach uranu wyśledzono też ślady prometu, ze względu na krótki czas półtrwania będącego tylko przejściowym produktem rozpadów, przy czym na postawie rozpowszechnienia uranu szacuje się że na ziemi w danym momencie istnieje maksymalnie 500 g prometu. Linie widmowe tych pierwiastków wykryto też w pewnych szczególnych gwiazdach, jak Gwiazda Przybylskiego.
Można oczywiście zakwestionować tą ich "występowalność" na zasadzie "to tyle że właściwie nic", tylko że podobnie rzadkie są też inne pierwiastki, zwykle zaliczane do naturalnych. Frans, najcięższy z litowców ma czas półtrwania niespełna 22 minuty i w całej Ziemi jest go około 20 gramów. Nigdy nie wyizolowano czystego metalu. Najcięższy halogenek, astat o licznie atomowej 85 ma czas półtrwania 8 godzin i prawdopodobnie na całej ziemi obecny jest w danej chwili w ilości maksymalnie kilku gram. Protaktyn pojawia się w rudach uranu w ilości ok. 0,3 ppm, rad w ilości 0,14 ppm.

Pod tym względem na miano naturalnego bardziej już zasługuje pluton i neptun, pierwiastki znane jako sztuczne ale występujące w rudach uranu. Np-237 jest najtrwalszy i ma czas półtrwania 2 miliony lat. Powstaje w wyniku wychwytu neutronu w bardziej zagęszczonych rudach uranu występując w ilości około 0,001 ppb. Nieco więcej jest w rudach plutonu, którego najtrwalszy izotop ma czas półtrwania 80 mln lat, co oznacza iż pewne śladowe ilości mogły zachować się aż z czasów formowania ziemi. Wykryto go w glebie księżycowej i rudach uranu oraz w większej ilości w rudzie tworzącej naturalny reaktor jądrowy w Oklo.
Ponieważ z rozpadu uranu powstaje ameryk uznaje się za możliwe jego powstawanie w przyrodzie, ale w tak małych ilościach, że nie wykrywalnych. W zasadzie taka możliwość zachodzi też dla kiuru i berkelu, choć wtedy chodziłoby raczej o kilka atomów. 

Suma
Jak zatem określić ile jest tych "naturalnych" pierwiastków?
Tych które dało się w naturze wykryć i wyizolować choćby w śladowych ilościach jest 94, z czego 4 zostały najpierw stworzone sztucznie a potem dopiero wykryto ich ślady w naturze.