informacje



niedziela, 10 listopada 2013

Skaczące kryształy

Gdy usłyszałem o skaczących kryształach, byłem bardzo zaskoczony ale i zaciekawiony. Kryształy pewnych substancji w odpowiednich warunkach deformują się na tyle gwałtownie, że są w stanie poskoczyć, niejednokrotnie na stosunkowo dużą odległość.

Stan krystaliczny charakteryzuje się regularnym, sieciowym ułożeniem cząstek i niejednorodnością właściwości fizycznych - na przykład wzdłuż pewnego wymiaru kryształ przewodzi prąd lepiej niż w innym, albo ogrzany wydłuża się w pewnym kierunku a w innym kurczy. Zależnie od stopnia powiązania budujących go cząstek, możemy mieć do czynienia z kryształem jonowym, złożonym z jonów soli połączonych w trwałą siatkę; z kryształem kowalencyjnym gdzie podobne do siebie atomy łączą się wiązaniami, bądź z kryształem molekularnym gdzie osobne cząsteczki związku nie są ze sobą trwale połączone, a jedynie upakowały się w przestrzeni na tyle ciasno, że tworzą ciało stałe.
Kwestia oddziaływań mechanicznych na właściwości kryształów była już dosyć dokładnie zbadana. Wiadomo że niektóre są na tyle plastyczne, że potrafią deformować się pod wpływem stale działających sił - przykładem sól kamienna która pod wpływem dużego ciśnienia nabiera skłonności do płynięcia. Inne kryształy reagują w jeszcze ciekawszy sposób - piezoelektryki pod wpływem ściskania elektryzują się z jednym ładunkiem na jednym końcu i drugim na przeciwnym. Różnice wytworzonych w ten sposób napięć potrafią być bardzo duże; kostka kryształu górskiego ściśnięta siłą 500 kN wytwarza różnicę napięć 12 tysięcy V, czego praktycznym wykorzystaniem z jakim każdy się spotkał, są zapalniczki piezoelektryczne - nacisk na przycisk deformuje grupę kryształów a różnica napięć generuje iskrę.
Piezoelektryki to substancje których komórki krystaliczne (najmniejsze stałe elementy sieci) nie mają środka symetrii a składają się z cząstek o różnym ładunku. Powoduje to że środki układu ładunków dodatnich i ujemnych nie pokrywają się ze sobą tworząc niewielki dipol. Ściskanie kryształu deformuje go, ściska komórki krystaliczne i przez zmianę ich kształtu rozsuwa środki układu ładunków - każda komórka staje się więc dipolem elektrycznym o wielkości zależnej od siły ucisku.

Sumą dipolów poszczególnych komórek jest naelektryzowanie się dwóch końców całego kryształu. Obserwuje się też efekt odwrotny - rozciąganie się kryształu pod wpływem przyłożonego ładunku. Wykorzystuje się to w zegarkach kwarcowych - piezoelektryczny kwarc pod wpływem napięcia z baterii nieco rozszerza się a potem kurczy, wydzielając mały impuls elektryczny; częstość pierwotna drgań daje 32768 impulsów na sekundę. Elektroniczne podzielniki zmniejszają ilość impulsów o połowę i po piętnastu takich podziałach pozostaje nam stały sygnał jeden impuls na sekundę


Wszystkie te efekty mechaniczne następują stopniowo, zmieniając się płynnie zależnie od przyłożonych sił. Dlatego zaskoczeniem było odkrycie silnych deformacji mechanicznych, które następują dosłownie skokowo.
Pierwszymi zaobserwowanymi skaczącymi kryształami były kryształy bromku oksytropium - leku rozkurczowego, od dawna stosowanego w medycynie. W zasadzie ciekawe że przez długi czas ta właściwość umykała badaczom, choć zapewne mogli ją obserwować podczas często stosowanego do identyfikacji testu pomiaru temperatury topnienia, efekt następuje bowiem podczas ogrzewania - niewielkie kryształki związku nagle podskakują na odległość do kilku centymetrów. Zjawisko zarejestrowano na filmie:
Kryształy przeskakują w całości lub po pęknięciu. Jaki jest mechanizm zjawiska?
Bromek oksytropium składa się z dwóch części: tricyklicznego kationu epoksyazanonyliowego połączonego przez elastyczne wiązanie estrowe z  częścią aromatyczną, zaś aniony bromkowe zobojętniają cząsteczkę; podejrzewam że dodatkową stabilizację układu zapewnia nie zaznaczone wiązanie wodorowe.

Tylko wiązanie estrowe nie jest sztywne i możliwy jest obrót jednej części cząsteczki względem drugiej, co jednak nie następuje w niskich temperaturach. W miarę wzrostu temperatury wzrasta energia drgań cząsteczki aż możliwe staje się przełamanie bariery rotacji i uzyskanie odmiennego kształtu. Powoduje to nagromadzenie się naprężeń uwalnianych jako jedno silne drgnięcie w chwili odblokowania rotacji większości cząsteczek. Kryształ wykonuje skok.[1] Zjawisko nazwano thremosalient effect co można by jak sądzę przetłumaczyć jako "efekt termosprężnujący" ("termoskokowy" źle by brzmiał, choć takie byłoby tłumaczenie dosłowne, od łacińskiego źródłosłowu saliens - skakanie, podskakiwanie).

Po tym odkryciu znaleziono inne, działające na innej zasadzie, ciekawa jest na przykład praca w której odkryto, że kryształy pewnych skomplikowanych kompleksów kompleksów metali przejściowych z perfluorowanym acetyloacetonem i ligandem będącym N-tlenkiem nitronylu, po utworzeniu wykazują skokowe ruchy polegające na podskokach i fragmentacji, trwające samoczynnie przez kilka tygodni. Źródłem okazała się reakcja eliminacji tlenu, powodująca zmiany upakowania cząstek kompleksu a co za tym idzie także deformacje kształtu kryształu.[2] Stosunkowo prostym związkiem którego kryształy ulegają podskakiwaniu jest 1,2,4,5-tetrabromobenzen.

Najciekawszy jest jednak efekt odkryty zupełnie niedawno - podskoki lub wręcz wybuchowa fragmentacja kryształy pod wpływem światła ultrafioletowego. Igiełkowate kryształki o wielkości do 1 mm odsakiwały nawet na kilkanaście centymetrów, a więc na odległość tysiące razy większą od własnej wielkości. Przy pomocy szybkiej kamery i ten efekt dało się utrwalić:

Są to kryształy stosunkowo prostego i jak sądzę łatwego do otrzymania kompleksu kobaltu [Co(NH3)5(NO2)]Cl(NO3) , zaś mechanizm powstawania tak silnych naprężeń, opiera się na jeszcze innej zasadzie. Jednym z ligandów wokół centralnego atomu kobaltu jest ligand nitrytowy NO2, który łączy się z kobaltem za pomocą wiązania koordynacyjnego poprzez azot. Ligand ten mógłby jednak równie dobrze połączyć się poprzez któryś z tlenów, tworząc nieco inny kompleks, i jak się wydaje, podczas naświetlana ultrafioletem taka przemiana właśnie następuje.
Ligand obraca się i przyłącza od innej strony co zmienia upakowanie cząstek, a ponieważ obracają się praktycznie wszystkie w krysztale, bez wytwarzania nowej fazy krystalicznej, dochodzi do nagromadzenia się naprężeń mechanicznych. Znane są dwie formy krystaliczne tego kompleksu - jedna, znana już dotychczas, o pokroju wykształconym przez dodatek inhibitora powodującego zmianę kształtu zarodka. Takie kryształy po oświetleniu ultrafioletem wyginały się, z wypukłością skierowaną w stronę źródła światła, a po kilku godzinach powracały do stanu pierwotnego.
Druga forma to kryształy otrzymane bez dodatków, mniej plastyczne, w których naprężenia nie mogły stopniowo uwalniać się w ciągłym ruchu. Mogło to nastąpić dopiero w wyskoku, do którego dochodziło na kilka sposobów - przez odłamanie końcówki, odłamanie naroży, przełamanie na pół lub podskok całego kryształu bez rozpadu
Czasem kryształ roztrzaskiwał się na kilka kawałków. Zjawisko nazwano "photosalient effect" co tłumaczyłbym jako "efekt fotosprężynujący".

Autorzy artykułu na temat odkrycia przypuszczają, że może przydać się w maszynach molekularnych lub, po opanowaniu, w materiałach w rodzaju sztucznych mięśni.[3] Osobiście obstawiałbym jednak że w zestawieniu z kryształami piezoelektrycznymi mógłby służyć go generowania pojedynczych silnych impulsów, na przykład w pewnych typach czujników.
--------
ResearchBlogging.org [1] Skoko Ž, Zamir S, Naumov P, & Bernstein J (2010). The thermosalient phenomenon. "Jumping crystals" and crystal chemistry of the anticholinergic agent oxitropium bromide. Journal of the American Chemical Society, 132 (40), 14191-202 PMID: 20860383 
[2] Ovcharenko VI, Fokin SV, Fursova EY, Kuznetsova OV, Tretyakov EV, Romanenko GV, & Bogomyakov AS (2011). "Jumping crystals": oxygen-evolving metal-nitroxide complexes. Inorganic chemistry, 50 (10), 4307-12 PMID: 21491890
[3]  Prof. Panče Naumov, Dr. Subash Chandra Sahoo, Dr. Boris A. Zakharov, Prof. Elena V. Boldyreva (2013). Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping (The Photosalient Effect) Angewandte Chemie International Edition DOI: 10.1002/anie.201303757
 [To swoją drogą dosyć dziwna praca. We wstępie autorzy odnoszą się do tego iż dotychczas samoczynne ruchy obserwowano w przyrodzie ożywionej, a więc u zwierząt i u roślin, zaś efekt fotosprężynujący jest ciekawym przykładem ruchów w przyrodzie nieożywionej. Ten fragment został opatrzony aż ośmioma przypisami do prac i książek na temat ruchów w świecie zwierzęcym i przypadkowych prac na temat ruchów roślin. Nie wiem na ile zgadza się to z przyjętymi zwyczajami, ale wygląda mi na sposób zwiększenia objętości bibliografii, aby - kto wie? - całość lepiej wyglądała]

Brak komentarzy:

Prześlij komentarz