informacje



Pokazywanie postów oznaczonych etykietą izomeria. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą izomeria. Pokaż wszystkie posty

poniedziałek, 19 listopada 2018

Ile jest związków chemicznych?

Ile właściwie istnieje związków chemicznych? Odpowiadając najkrócej: tak wiele, że się nie da policzyć.

Związkami chemicznymi są substancje o określonym typie połączenia różnych atomów, to jest posiadające strukturę, układ wiązań i wartościowości atomowych charakterystyczne dla niego, i powtarzalne w kolejnych porcjach. Liczba możliwych kombinacji atomów, już dla ich niewielkiej ilości, jest przeogromna. Dla składu pierwiastkowego C10 H22 możliwych jest 75 związków, różniących się tylko sposobem połączenia atomów węgla.[1] Wraz z ilością atomów węgla liczba izomerów gwałtownie rośnie, a to przecież tylko połączenia dwóch pierwiastków. Wszystkich pierwiastków na tyle trwałych, aby można było nimi operować jest ponad 90. Potencjalnie możliwych połączeń nawet przy ograniczonej ilości atomów jest niemal tyle, co gwiazd na niebie.

Z drugiej strony pewne połączenia, które da się wymyślić, niekoniecznie muszą mieć szansę faktycznie zaistnieć. Ze względu na kolejność łączenia się atomów pewne najbardziej naprężone, wykręcone czy zabudowane przestrzennie cząsteczki po prostu się nie utworzą. Hipotetyczny tetra-tertbutylometan nie został dotychczas zaobserwowany, ze względu na bycie bardzo ścisłą węglowodorową kulką, w której duże grupy organiczne wzajemnie sobie przeszkadzają i już podstawienie trzech nie zostawia za wiele miejsca na podejście czwartej.
Tetra-tertbutylometan
Rozważając więc ilość istniejących związków, należy raczej brać pod uwagę te faktycznie możliwe bądź też już wykryte. A ponieważ jest ich bardzo dużo, zaczęto je spisywać w bazach danych, możliwych do szybkiego przeszukania zawartości. Niektóre z nich są dostępne dla każdego on line.


Beilstein
Baza danych Beilstein gromadzi informacje o związkach, które wyizolowano w stanie czystym i zbadano właściwości oraz podano informacje spektroskopowe. Inaczej mówiąc, są to związki, których istnienie i właściwości zostały dobrze potwierdzone. Baza początkowo opierała się o związki opisane w "Beilstein Handbook of Organic Chemistry" wydawanym w Niemczech od 1778 roku, potem o związki opisane w najważniejszych światowych czasopismach naukowych.
Baza zgromadziła już informacje o około 6 milionach związków organicznych i 5 milionów reakcji w których się pojawiają. Dostęp do bazy odbywa się przez serwis Reaxys wymagający logowania, udostępniany pracownikom naukowym.

Gmelin
Pokrewna Beilsteinowi baza danych na temat związków nieorganicznych i organometalicznych. Zebrała informacje o 2,4 miliona związków.

Chem Spider
Ogólnodostępna bada danych na temat związków chemicznych, które dobrze zbadano. Z tego co zaobserwowałem, często można tam znaleźć więcej danych fizycznych niż podane w innych bazach, pełnych pustych rubryk. Zawiera informacje o około 65 milionach związków.

PubChem
Baza służąca do wyszukiwania informacji o związkach chemicznych, ich właściwościach, publikacjach w których się pojawiały, patentach itp. Jest to właściwie połączenie wiadomości z różnych baz. Dostęp jest darmowy, możliwe jest szukanie związków na podstawie rysunku strukturalnego, ograniczeniem jest tylko wielkość cząsteczki poniżej 1000 atomów.
Baza zawiera informacje o wyizolowanych, zbadanych i scharakteryzowanych związkach (około 94 miliony), oraz bardziej nieprecyzyjne dane na temat "substancji" do czego zaliczają się na przykład mieszaniny, kompleksy i nie do końca scharakteryzowane substancje. Tych zapisów jest 236 milionów.

CAS
Chemical Abstracts to wydawnictwo zbierające abstrakty - krótkie streszczenia mówiące o czym jest i co zawiera artykuł naukowy. Pozbierane zostały ze wszystkich ważniejszych czasopism, udostępniających anglojęzyczne abstrakty. Na podstawie tego zbioru utworzono katalog opisanych związków chemicznych, w którym każdemu przypisuje się numer - numer CAS. Ma on format trzech liczb oddzielonych myślnikami: XXXX-YY-Z. Pierwsza liczba może zawierać od dwóch do siedmiu liczb, druga zawiera dwie, zaś ostatnia jedną, jest to zresztą suma kontrolna pomagająca pilnować czy nie doszło do błędu w zapisie.
Podejście twórców do jakości danych jest nieco bardziej liberalne niż u Beilsteina - wystarczy że związek został opisany i scharakteryzowano jego skład i budowę. W bazie znalazły się związki organiczne, nieorganiczne, pierwiastki, niektóre wyraźnie różne alotropy, stopy metaliczne, interkalacje, klatraty itp. Jest to więc baza wszystkich opisanych substancji chemicznych.
Dla wielu związków szukanie na ich temat informacji czy publikacji jest łatwiejsze, jeśli szuka się po numerze CAS, niż po nazwie systematycznej - a ta potrafi być długa i skomplikowana.

W bazie jak na razie zgromadzono 144 miliony związków chemicznych, oraz 67 milionów protein, enzymów i sekwencji DNA.[2]

Te bazy oczywiście nie wyczerpują całego zasobu istniejących substancji. Ciągle bada się przyrodę, odkrywając w niej nowe związki. W substancjach smolistych niecałkowitego spalania z pewnością pojawiają się jeszcze nieopisane formy węglowodorów aromatycznych. Są też związki zsyntezowane i scharakteryzowane, które opisano w tak nieznaczących miejscach, że żadna baza ich nie zawiera.  Wreszcie - każdy z nas posiada w sobie unikalny związek chemiczny - własne DNA. Każdy człowiek to nowa cząsteczka, a tych przecież przybywa.
Nigdy nie doliczymy się wszystkich.
----------
* CAS
* Beilstein
* Pub Chem
* Chem Spider

 *  http://old.enea.it/com/inf/biblioteche/DiscoveryGate/Databases.pdf
[1] http://www.3rd1000.com/chem301/decane.htm
[2]  https://www.cas.org/about/cas-content

poniedziałek, 7 maja 2018

Trans/Cis

Kiedyś już omawiałem na blogu jeden z rodzajów izomerii - izomery orto, meta i para. Czas więc opowiedzieć coś o innym, równie często spotykanym - izomerii Trans-Cis, opartej o różne ustawienie podstawników wokół wiązania podwójnego.

Podwójne wiązanie między atomami powstaje wskutek dodania jednego wiązania typu sigma i jednego typu pi. Następuje to po hydrydyzacji orbitali elektronowych, to jest swoistego wymieszania tworzącego orbitale o wyrównanej energii. Wiązanie sigma tworzą orbitale nakładające się na wprost, zaś wiązanie pi jest tworzone przez boczne nałożenie orbitali w kształcie klepsydry po obu stromach wiązania sigma:

W efekcie wiązanie to jest sztywne i płaskie, a grupy na końcach nie zmieniają ustawienia w zwyczajnych warunkach (wysoka temperatura lub naświetlenie mogą wywołać izomeryzację). W związku z tym faktem, gdy na czterech końcach wokół wiązania obecne są różne podstawniki, możliwe stają się różne izomery.

W najprostszym przypadku na dwóch końcach pojawiają się dalsze organiczne części cząsteczki, zaś dwa pozostałe zajmują wodory. Przyjęto więc zasadę nazewnictwa, wedle której izomerami cis są cząsteczki, w których grupy organiczne znajdują się po tej samej stronie, a izomerami trans cząsteczki, w których grupy ustawione są po przeciwnych stronach:

Czasem też korzysta się z tego układu gdy przy wiązaniu pojawiają się inne podstawniki, ale takie same, na przykład dwa podstawniki chlorowe.
Z przedrostkami określającymi izomerię wiązań podwójnych możemy spotkać się w nazwach pospolitych. Słynne w ostatnich latach tłuszcze trans, to tłuszcze zawierające wyłącznie-trans nienasycone kwasy tłuszczowe. Układ taki nadaje im generalnie liniowy kształt co ma wpływ na właściwości fizyczne - tłuszcze trans mają wyższą temperaturę topnienia z powodu ściślejszego przylegania prostych cząsteczek co zwiększa oddziaływania między nimi.

   Tłuszcze zawierające przynajmniej jedno wiązanie cis są bardziej wygięte, co utrudnia ścisłe upakowanie. Przykładowo kwas oleinowy, będący głównym kwasem tłuszczowym oliwki z oliwek, posiada tylko jedno wiązanie podwójne na 9 węglu (omega-9) i ma ono układ cis, przez co cząsteczka nabiera wygiętego kształtu a sam związek ma temperaturę topnienia 13°C. Jego izomer trans to kwas elaidynowy o temperaturze topnienia 45°C. Oznacza to, że ten pierwszy pozostaje płynny w temperaturze pokojowej, zaś ten drugi pozostaje stały nawet w temperaturze ludzkiego ciała. 
   Związkiem o dużej ilości wiązań podwójnych w układzie trans jest karoten, pomarańczowy barwnik marchwi. Z kolei przykładem związku z dużą ilością samych tylko wiązań cis jest bardzo rzadki kwas dokozoheksaenowy (DHA), w którym sześć kolejnych takich wiązań skręca jego cząsteczkę w kółeczko:

W ostatnich dekadach zwraca się uwagę na dostarczanie wraz z dietą odpowiedniej ilości tłuszczy z kwasami cis, które pełnią w organizmie różne funkcje biologiczne.

Ten typ izomerii występuje też w związkach pierścieniowych z wiązaniami pojedynczymi. W takim przypadku cały pierścień pełni rolę drugiego wiązania, powstrzymując rotację sąsiadujących grup. Izomerem cis jest związek, gdy podstawniki na sąsiednich węglach są położone po tej samej stronie pierścienia, a trans gdy po przeciwnych:
Związki różniące się geometrią wokół wiązania podwójnego mogą posiadać różne właściwości nie tylko fizyczne ale i chemiczne. W układzie Cis grupy po obu stronach mogą silniej ze sobą oddziaływać. Przykładem mogą być najprostsze nienasycone kwasy dikarboksylowe - fumarowy i maleinowy. Ten pierwszy zawiera dwie grupy karboksylowe w układzie trans, a więc po przeciwnych stronach. Dzięki temu w kryształach dość chętnie tworzą wiązania wodorowe między cząsteczkami, sam związek ma więc stosunkowo dużą temperaturę topnienia (287 °C ) i jest słabo rozpuszczalny w wodzie.
Natomiast kwas maleinowy posiada dwie grupy karboksylowe w układzie cis, po tej samej stronie, które w tym bliskim położeniu tworzą wewnątrzcząsteczkowe wiązanie wodorowe, kosztem tych pomiędzy cząsteczkami. Słabsze oddziaływania między cząsteczkami w krysztale zwiększają rozpuszczalność w wodzie oraz obniżają temperaturę topnienia niemal dwa razy. (135 °C ) W dodatku utworzenie wewnętrznego wiązania wodorowego do jednej z grup karboksylowym powoduje, że niezwiązany wodór z tej drugiej łatwiej ulega odszczepieniu, przez co kwas maleinowy jest w roztworach silniejszym kwasem niż fumarowy (pKa = 1,9 wobec 3,0). W niektórych przypadkach izomery geometryczne mogą różnić się kolorem.

Izomeria geometryczna może też mieć znaczenie dla stabilności związku. Stosunkowo duże grupy organiczne przeszkadzają sobie w przestrzeni a nawet odpychają się, dlatego ułożenie ich po tej samej stronie, w zbliżeniu, jest bardziej niekorzystne energetycznie. Objawia się to wyższą wartością ciepła spalania dla izomerów cis o dużych grupach niż dla izomerów trans. W warunkach osłabiających lub przejściowo likwidujących wiązanie podwójne obserwuje się izomeryzację i częściej wówczas ustala się równowaga z przewagą układu trans, jako mniej naprężonego.

Podobny typ izomerii występuje też w związkach nieorganicznych - jeśli w kompleksie metalu z różnymi ligandami tworzona jest płaska, kwadratowa struktura, zaś kompleks tworzą dwa rodzaje ligandów, możliwe stają się dwa izomery - kompleksy cis, gdy dwa takie same ligandy znajdują się obok siebie, i kompleksy trans, gdy są położone w przeciwnych narożach kwadratu:
W powyższym przypadku kompleks nazywany cisplatyną jest znanym lekiem przeciwnowotworowym.

E/Z
Ale przypadek gdy przy wiązaniu podwójnym dwa podstawniki to wodory a kolejne dwa to grupy organiczne, jest za prosty. Jeśli w takim miejscu pojawią się cztery różne podstawniki, wówczas stosuje się nazewnictwo w systemie E/Z. Oznaczenia pochodzą od niemieckich słów "zusammen" czyli "razem" oraz "entgegen" czyli "naprzeciwko".
Zasada nazewnictwa opiera się o ważność podstawników, główną braną pod uwagę regułą jest ciężar atomowy, kolejną stopień rozbudowania czy obecność wiązań wielokrotnych. Jeśli dwie kolejno najważniejsze grupy są położone po tej samej stronie, to układ oznacza się jako Z, zaś gdy są po przeciwnych stronach, to jako E.

Warto zauważyć, że w zasadzie jest to system bardziej ogólny, w ramach którego izomeria trans/cis stanowi szczególny przypadek.


Izomeryzacja
Proces w wyniku którego następuje obrót grup i zamiana jednego izomeru w drugi, to izomeryzacja. Ze względu na sztywność wiązania podwójnego, proces musi przebiegać poprzez stan pośredni, w którym jest ono osłabione lub nie istnieje. Jedną odmian jest fotoizomeryzacja, gdzie obrót staje się możliwy dzięki energii z pochłoniętego światła. Wiązanie podwójne pochłania kwant światła i przechodzi w stan wzbudzony, w którym nie jest już tak sztywne i staje się podatne na ruchy skręcające. Może więc nastąpić obrót i zamiana w inny izomer.
W przypadku wielu związków organicznych, zakres energii pochłanianego światła lokuje je w obrębie ultrafioletu, czasem też bliżej fioletu z zakresu widzialnego, co nadaje wielu związkom nieco żółtawy kolor. Wiele związków używanych jako filtry UV w kremach do opalania to cząsteczki z wiązaniem podwójnym, które bardzo łatwo izomeryzują w obie strony. Dość chętnie używane są na przykład pochodne kwasu cynamonowego, w formie naturalnej w układzie trans :
Inny przykład to enzokamen, oznaczany jako  4-MBC, będący specyficzną pochodną kamfory:

Fotoizomeryzacja ma znaczenie dla procesu widzenia. W fotoreceptorach oka zawarty jest kompleks białka opsyny z retinalem, czyli aktywną formą witaminy A, która jest cząsteczką z trzema wiązaniami podwójnymi. W formie aktywnej w foceptorze retinal występuje w geometrii 11-cis, a więc wygiętej. Pod wpływem kwantu światła następuje izomeryzacja, przez co cząsteczka się prostuje. Do obu końców cząsteczki przyczepione są fragmenty białkowej opsyny, która po zmianie kształtu retinalu, pociągnięta mechanicznie dwoma końcami musi zmienić kształt. Generuje to kaskadę dalszych reakcji prowadzących w końcu do wytworzenia impulsu nerwowego.

Izomeryzacja może też zajść pod wpływem wysokiej temperatury i reakcji chemicznych. Przykładowo podczas uwodornienia tłuszczów nienasyconych przy produkcji margaryny, reakcja przyłączenia jednego atomu wodoru do jednego z wiązań podwójnych kwasu tłuszczowego, zamienia go w formę karboanionu. Jest to struktura niepłaska z wiązaniem pojedynczym, w której może nastąpić obrót cząsteczki. Jeśli drugi atom wodoru się nie przyłączy, aż ten dodany z powrotem ulegnie odszczepieniu, cząsteczka powróci do stanu nienasyconego ale z częściową izomeryzacją. Tak właśnie podczas tylko częściowego uwodornienia tłuszczu, z kwasów tłuszczowych cis powstają kwasy trans. (podczas całkowitego uwodornienia także wiązania trans ulegają uwodornieniu i znikają).
Izomeryzacja trwalszego kwasu fumarowego w mniej trwały maleinowy następuje w reakcji rodnikowej z bromem lub w stężonych kwasach.