informacje



sobota, 2 kwietnia 2011

Radon, czyli radioaktywność w każdym domu

Następną notkę na blogu chciałem poświęcić na omówienie "naturalnych i ziołowych" preparatów, mających nie zawierać związków chemicznych, ale jak to bywa, w ręce wpadł mi temat bardziej bieżący.

Rozmawiałem ze znajomą. Żart o tym, że nadzwyczaj tanie truskawki ze sklepu pewnie były sprowadzone z Japonii, sprowokował dyskusję na temat rozmaitych newsów medialnych. "Tyle się naoglądałam w internecie filmów o różnych truciznach we wszystkim, o skażeniu, że głowa mała. Że aspartam, że konserwanty czy coś" - wyznała. Ja na to wyraziłem opinię o rozmaitych panikarzach z "University of Youtube", którzy głośno protestują wobec czegoś co akurat jest na topie, a nie chce im się sprawdzać, czy na ich podwórku nie dzieje się aby coś gorszego. I nie chodzi mi o ludzi podpisującymi się pod ekologicznymi listami poparcia, który potem palą śmieciami w piecu - to norma. Nikt na przykład nie krzyczy i nie drży z przerażenia - rzekłem - że większe napromieniowanie niż katastrofa na drugim końcu świata, wywołać może zejście do piwnicy. Bo tam się gromadzi Radon, a on jest promieniotwórczy, wychodzi w ziemi; że uwalnia się z płyt betonowo-popiołowych...
- Radon?
- No, taki promieniotwórczy gaz...
W tym momencie zrozumiałem, że jeśli o takich rzeczach się powszechnie nie mówi, to się i o nich powszechnie nie wie, o czym przekonało mnie zdumienie jakie wykwitło na jej twarzy.

Jeśli o takich sprawach się nie wie, to się powinno zacząć o nich mówić. Albo pisać. A ponieważ Radon jest pierwiastkiem i to w dodatku chemicznym to idealnie pasuje do tego, aby o nim na moim blogu opowiedzieć.

A zatem przedstawmy naszego bohatera:

Radon jest gazowym pierwiastkiem chemicznym z grupy Helowców, o liczbie atomowej 86, i jak każdy pierwiastek położony za ołowiem w układzie okresowym nie posiada trwałych izotopów. Wszystkie są promieniotwórcze i krótkożyjące. Należy do gazów szlachetnych, bezbarwnych, bezwonnych i pozbawionych smaku, nadzwyczaj niechętnie wchodzących w jakiekolwiek reakcje chemiczne, choć ostatnie lata pokazały, że czasem jednak zachodzą z nimi drobne mezalianse. Przykładowo radon już w temperaturze pokojowej tworzy fluorki, co wiąże się z dostarczeniem fluorowi energii aktywacji powstającej przy rozpadzie. Z uwagi na bardzo krótki czas półtrwania jego chemia jest raczej słabo zbadana, zwłaszcza że jego związki ulegają rozkładowi pod wpływem własnej radioaktywności.
Najtrwalszym izotopem jest Radon-222, o czasie półtrwania 3,6 dnia - oznacza to, że z każdego grama po 3,6 dnia zostaje połowa, po następnym takim okresie zostaje ćwierć grama, po kolejnym jedna ósma i tak dalej. Po miesiącu zostają ślady.
Radon powstaje w toku naturalnych przemian promieniotwórczych, jako element naturalnego szeregu przemian promieniotwórczych (szereg uranowo-radowy). Związki Uranu są rozproszone w skorupie ziemskiej, niewielkie ilości zawierają minerały ilaste, większe granity i bazalty. W wyniku rozpadu uranu powstają kolejne izotopy promieniotwórcze, aż do Radu nad którego wydzieleniem trudniła się nasza Skłodowska. Rad, z okresem półtrwania 1600 lat, zamienia się w Radon.

W roku 1900 Ernst Friedrich Dorn, badający przemiany promieniotwórcze, zwrócił uwagę na gazy wydzielające się z preparatów Toru i Radu, co skądinąd objaśniało zauważony już wcześniej fakt utraty masy próbek soli radowych. Później świetny chemik Ruthenford potwierdził spetroskopowo, że oba gazy stanowią jeden pierwiastek. Owo "promieniotwórcze powietrze madame Curie"[1] nazwane zostało początkowo Emanacją, i nazwa taka funkcjonowała jeszcze dłuższy czas, aż wreszcie wyparła ją nazwa nadana najtrwalszemu izotopowi.

No dobrze, jest sobie taki pierwiastek i co nam do tego? A to chociażby, że wydzielając się z gleby gromadzi się w naszych domach gdzie codziennie wdychamy go z powietrzem, zaś znalazłszy się w płucach jak gdyby nigdy nic napromieniowuje okoliczną tkankę, doprowadzając do jej uszkodzenia. A warto przypomnieć, że promieniowanie jonizujące należy do najważniejszych czynników kancerogennych. Według wyliczeń amerykańskiej agencji ochrony środowiska (EPA) narażenie na radon stanowi drugą, po paleniu papierosów, przyczynę raka płuc w Stanach Zjednoczonych, skutkując około 21 tyś. zgonów rocznie (wobec prawie 160 tyś. zgonów wśród palaczy), w tym 2900 u osób nigdy nie palących. Światowa Organizacja Zdrowia (WHO) ocenia, że radon odpowiada za 15 % raków płuc na świecie.[2] Niestety nie znalazłem podobnych wyliczeń dla Polski, choć podejrzewam że procentowo dane są podobne. U palaczy narażonych na radon, oddziaływanie a więc i ryzyko choroby jest kilkukrotnie większe, większe niż ze względu na sam tytoń, bowiem oddziaływania obu czynników nakładają się na siebie. Badania z Francji sugerują ponadto, że radon w wodzie pitnej, może wpływać na częstość występowania białaczki.

Jak radon przedostaje się do mieszkań? Głównym źródłem jest ziemia, z której przez różne szczeliny i pory wydostaje się na powierzchnię. W miejscach przebiegu uskoków i podobnych nieciągłości, również tam, gdzie spoistość gruntu została naruszona pracami górniczymi, jego wydzielanie jest większe. Wielkość wydzielania jest też zależna od rodzaju podłoża - w podłożu ze skał osadowych radonu jest mało, natomiast w kamienistej glebie terenów podgórskich jest o dużo. Ciekawy przypadek zachodzi w Stanach Zjednoczonych, gdzie najwyższe stężenia notuje się w równinnym stanie Iowa. Przyczyną jest tu duża ilość granitowych głazów naniesionych przez lodowiec, zwiększająca aktywność gleby. Nie znalazłem informacji, czy podobny efekt występuje na Suwalszczyźnie i Warmii, gdzie ilość złożonych eratyków jest doprawdy ogromna.

Radon w mieszkaniach w USA

Ponieważ radon jest gazem 8 razy cięższym od powietrza, najchętniej gromadzi się w zagłębieniach terenu i piwnicach, do których przedostaje się przez szczeliny i pory ścian (każdy, komu wybijająca ze ścian woda zalała piwnicę, wie jak dużo może przez nie przelatywać). Stamtąd, powodu różnic ciśnienia i przeciągów, może się przemieszczać w górę, do części mieszkalnych. W ciągu kilkunastu godzin jego stężenie osiąga maksymalny poziom. Szybko podlega rozpadowi wydzielając silnie jonizujące promieniowanie alfa, przemieniając się w szereg nietrwałych pierwiastków, o czasach półtrwania rzędu kilkunastu minut. Ostatecznie najgroźniejsze są jednak izotopy Ołowiu-210 i Polonu-210 o czasach półtrwania odpowiednio 5 i 160 dni. Mają postać stałych cząstek, łatwo gromadzących się w kurzu i osadzających się w płucach. Również są promieniotwórcze - w sumie zatem można by powiedzieć, że Radon to trucizna, która truje kilka razy. Ponieważ ogólne stężenie izotopów jest zbyt małe, aby określać je w ilościowy sposób, zwykle podaje się ilość rozpadów promieniotwórczych w metrze sześciennym powietrza w ciągu sekundy - jeden taki rozpad to jeden Bekerel - 1 Bq / m 3 .

A jak to wygląda w Polsce? Na nizinach stężenia są raczej niskie, średnia krajowa to 10-40 Bq/m³, jednak na terenach podgórskich zwiększa się, najwyższą koncentrację wykazując w Sudetach.
Niektóre wyniki są zatrważające:
Badania prowadzone przez Państwowy Zakład Higieny wykazały najwyższe stężenia w miejscowościach województwa jeleniogórskiego, gdzie natrafiono na piwnice z promieniowaniem 2837,9 bekereli, czyli przewyższającym nowo przyjęte wskaźniki aż czternastokrotnie! Maksymalna dawka zanotowana w piwnicach w Krośnieńskiem to 1652,3 bekereli, w Wałbrzyskiem - 784,4 bekereli, natomiast na Górnym Śląsku - 366,3 bekereli. Biorąc pod uwagę zasięg pomiarów, można śmiało przypuszczać, że są miejsca, gdzie promieniowanie jest jeszcze wyższe. [3]

Maksymalna dopuszczalna norma to 200 Bq/m³, w niektóre badania wykazywały jeszcze wyższe stężenia w piwnicach - dlatego postawiona na początku teza, ze zejście do piwnicy może być groźniejsze niż katastrofa w Japonii jest w pełni uzasadniona. Wedle najnowszego komunikatu Instytutu Fizyki Jądrowej PAN w Krakowie, stężenie radioaktywnego jodu pochodzącego z Fukushimy, w dniu 30 marca, wyniosło 8,3 milibekereli na metr sześcienny powietrza nad Polską.[4] Mili to jedna tysięczna. Zatem "katastrofa na drugim końcu świata" wywołała skażenie rzędu 0,0083 Bq/m³, tysiące razy mniejsze od przeciętnego skażenia piwnic, i kilka milionów mniejsze od najwyższych notowanych w Polsce wartości. I kto dziś pójdzie po konfitury?

Problemem w okolicach Kotliny Jeleniogórskiej jest też radoczynna woda pitna. Przykładem mogą być Janowice Wielkie, w których ujęcie wody umieszczono w dawnej kopalni uranu. Pierwotnie zakładano zainstalowanie aparatury do odgazowania wody, lecz ostatecznie zrezygnowano z niej. Alarm podniósł dopiero Grzegorz Prokop, którego 10 letnia córka nagle zachorowała na chłoniaka - groźny nowotwór układu limfatycznego. Zawartość radonu w wodzie przekraczała tam kilkukrotnie zalecane normy, zaś ulatniając się np. podczas prysznicu, zamieniał łazienkę w domową komorę gazową. Dopiero po tym odpowiednie urządzenie zostało tam zamontowane.

Podobnie rzecz wygląda za granicą. W USA w ok. 14 procent mieszkań przekroczone są normy zawartości. Głośny stał się przypadek Stanleya Watarsa, pracownika elektrowni atomowej, u którego w 1984 roku czujniki promieniowania wykryły duże skażenie. Ponieważ w samym zakładzie nie doszło do żadnych awarii, było jasne, że źródło musiało znajdować się poza nim. Ostatecznie stwierdzono, że źródłem tym był dom pana Watarsa, a dokładnie zaradonowana piwnica. Oceniono ze wpływ wykrytego stężenia odpowiadał by wpływowi 135 papierosów wypalonych dziennie.

Jaki jest najlepszy sposób na radioaktywny gaz? Wietrzenie. To zaskakujące, ale jest to prosty i skuteczny sposób. Niestety w wielu polskich domach ze złą izolacją cieplną, mieszkańcy chronią się zimą przed mrozem takimi środkami, jak szczelne, plastikowe okna i zaklejone wywietrzniki, co prócz licznych tragedii związanych z czadem ulatniającym się z piecyków gazowych, wpływa też na zwiększenie zawartości Rn-222 w powietrzu domowym.

Temat popularnych zagrożeń promieniotwórczy jest jednak znacznie szerszy. Pewne ilości radonu mogą się też wydzielać z materiałów budowlanych - między innymi dlatego skały granitowe nie są zalecane w budownictwie mieszkaniowym, nawet na wykończenia.
Mało znana jest też dość duża aktywność popiołów pozostałych po spaleniu węgla, które jeszcze do niedawna były traktowane jak odpady niebezpieczne. Niestety popioły lotne i żużle często są używane jako dodatek do betonu i do wyrobu cegieł a nawet do naprawy dróg. Co prawda dane wskazują, że mimo dużego podwyższenia emisji, nie przekracza ona norm, ale mam wrażenie, że nie brano tu pod uwagę efektu łącznej emisji ze źródeł naturalnych i ze ścian, dlatego powszechność wykorzystywania takich materiałów, jest dla mnie niepokojąca.

Lutowy "Świat Nauki" dorzuca do naszych rozważań jeszcze jeden wątek [5], który pokrótce omówię. Otóż papierosy, oprócz setek innych szkodliwych związków, zawierają omawiany już Polon. Skąd się tam wziął? Pola tytoniu nawożone są nawozami fosforowymi, zawierającymi zwykle domieszki uranu. Szczególnie dużo zawiera go Tomasyna, będące wszakże zmielonym żużlem powstałym podczas świeżenia stali w metodzie Thomasa. Z uranu powstaje nasz radon, a z niego stałe izotopy potomne, które osadzają się na włochatych liściach tytoniu. Ok. 70% Polonu jest wydzielane wraz z dymem, a stamtąd trafia do płuc palaczy. Ocenia się że sam polon w dymie papierosowym, może odpowiadać za 2% raków płuc u palaczy.
Papieros też groźny
Jak zmniejszyć to ryzyko? Można używać specjalnych mieszanek nawozów, z mniejszą ilością uranu, ale byłyby ona za drogie. Można też płukać zebrane liście w odpowiednich roztworach, ale to również podwyższyło by ceny, podobnie jak hodowla bezwłosych odmian. Musiały by się na to zgodzić koncerny tytoniowe, ale z tym nie jest dobrze. Polon w tytoniu wykryto w latach 60. i wiadomo że dotychczas informacje o skali zagrożenie były ukrywane, zaś silny lobbing firm papierosowych blokował kolejne publikacje na ten temat. Spisek wielkich firm? Nieuczciwy sposób dbania o interesy? Nazywajcie to sobie jak chcecie. Ja nie palę i Wam też nie radzę.

Kończę mój przydługi artykuł. Nie straszenie a informowanie było jego celem. Następne wpisy porzucą (choć nie do końca) tematykę promieniowania, i może znajdzie się tam coś budzącego raczej rozbawienie niż niepokój.
A teraz otwórzcie szeroko okno, przewietrzcie mieszkanie, i pomyślcie o wiośnie, która właśnie nadchodzi, a od razu zrobi się wam lepiej.

-------
Przypisy i źródła:
[1] - określenie, jako cytat, znalazłem w jednej z książek, niestety nie pamiętam jakiej.
[2] http://www.epa.gov/radon/
[3] http://www.halat.pl/radon.html - dużo artykułów na ten temat
[4] http://paa.gov.pl/ -
[5] Brianna Rego, Promieniotwórczy dymek, Świat Nauki nr. 2 2011
* http://en.wikipedia.org/wiki/Radon


Edit: najnowszy komunikat PAA podaje, że stężenie radioaktywnego jodu-131 nad Polską zmalało dziesięciokrotnie, i w dniu 4 kwietnia wahało się między 800 a 200 mikrobekereli (Kraków-Gdynia). Mikro to jedna milionowa, a więc zakres 0,0008-0,0002 Bq/m³.

Edit 2: wg. PAA skażenie
radioaktywnym jodem nad Polską nadal spada, i dla okresu pomiarowego 07-11 kwietnia wynosiło 130 - 360 mikrobekereli na metr sześcienny (0,00036-0,00013 Bq/m³)

niedziela, 20 marca 2011

Otrzymywanie o i p-nitrofenolu

Jak tu już obiecywałem, zajmę się teraz opisem, a właściwie relacją, z przeprowadzonej na zajęciach syntezy. Będzie to prosta, jak na możliwości chemii organicznej preparatywnej, reakcja nitrowania fenolu, i otrzymanie Orto-nitrofenolu i Para-nitrofenolu. Na początek jednak warto objaśnić pewne podstawowe pojęcia:

Fenol to pochodna benzenu (C6H6), związku aromatycznego, którego cząsteczka ma postać zamkniętego sześciobocznego pierścienia. W tym związku jeden z wodorów zastąpiony został grupą hydroksylową OH-, tak jak ma to miejsce w alkoholach, jednak własności fenolu różnią go od nich dość istotnie. Tlen z grupy hydroksylowej jest związany z pierścieniem znacznie silniej niż z wodorem, przez co ten stosunkowo łatwo się odszczepia, nadając fenolowi lekko kwaśny odczyn - dlatego też dawniej nazywano go Kwasem Karbolowym i z uwagi na silne właściwości bakteriobójcze używano jako pierwszego szpitalnego antyseptyka. Jest trujący i drażniący. W kontakcie ze skórą może powodować opatrzenia i martwice naskórka - co skądinąd wykorzystuje się w plastrach na kurzajki.
Znaczna różnica w elektroujemności między węglem (2,5) a tlenem (3,5) powoduje polaryzację wiązania i przesunięcie części ładunku na tlen - mówimy wówczas o "ujemnym efekcie mezomerycznym" bo tlen niejako "wyciąga" z pierścienia elektrony, powodując zaktywizowanie reaktywności. Równocześnie zachodzi proces odwrotny - jedna z wolnych par elektronowych tlenu może przeskakiwać na pierścień, tworząc nietrwałą strukturę jonową, z ładunkiem ujemnym na pierścieniu[1]. Jednak zaistniały ładunek nie jest ulokowany w jednym miejscu, lecz może przemieszczać się po pierścieniu, zajmując trzy równoważne pozycje:


Struktury mezomeryczne fenolu
Fakt ten decyduje nie tylko o dużej trwałości związku, lecz również o specyfice reakcji którym ulega, przede wszystkim zaś o tym gdzie i jak chętnie przyłączać się będą doń podstawniki.

Nitrowanie jest reakcją substytucji elektrofilowej, polegającej na zastępowaniu jednego z wodorów podstawnikiem, mającym właściwości elektrofila. Taki podstawnik ma niedomiar elektronów, i bardzo "lubi" przyłączać wszelkie dostępne. W tym przypadku elektrofilem jest nietrwały jon nitroniowy (NO2+) powstający w reakcji kwasu azotowego (V) z kwasem siarkowym (VI). A gdzie w fenolu mamy łatwo dostępny elektron? - tam gdzie w strukturach mezomerycznych pojawia się ładunek ujemny. Struktury takie, jak widać na powyższym obrazku, są trzy, dlatego też podstawić się mogą maksymalnie trzy grupy nitrowe i to wyłącznie w dokładnie określonych pozycjach.
W przypadku sześciowęglowego fenolu grupa nitrowa może połączyć się z węglem o numerach 2 (licząc węgiel połączony z grupą hydroksylową jako 1) lub 4 lub 6 - ponieważ jednak dla jednej grupy pozycje 2 i 6 są identyczne, uznaje się, że utworzyć się mogą tylko dwa różne związki: 2-nitrofenol i 4-nitrofenol. Dla pochodnych benzenu stosuje się nazewnictwo przypisujące danemu układowi przedrostek w nazwie, mianowicie Orto- dla położenia przy drugim węglu, Meta- dla węgla trzeciego i Para- dla węgla czwartego. Stąd nazwy: Orto-nitrofenol dla 2-nitrofenolu i Para-nitrofenol dla 4-nitrofenolu.

Na tym jednak nie koniec. Prowadząc nitrowanie konsekwentnie dalej otrzymamy dalsze pochodne, aż do trinitrofenolu zawierającego trzy grupy nitrowe przy węglach 2, 4 i 6. Związek ten to kwas pikrynowy, będący bardzo silnym materiałem wybuchowym. Związkiem bardzo do niego podobnym jest potrójnie znitrowany toluen - będący również prostą pochodną benzenu - w skrócie TNT. Jednak kwas pikrynowy, w odróżnieniu do Trotylu, jest bardzo nietrwały, wybucha od uderzenia, zgniecenia czy nawet nadmiernego podgrzania, dlatego z rzadka używa się go w charakterze spłonki, zaś wytworzenie większej ilości podczas syntezy, przynieść może nieprzewidziane skutki.


W zasadzie więc otrzymujemy dwa związki tego samego rodzaju i o takim samym wzorze sumarycznym, a jednak różnica pomiędzy nimi jest dość istotna. W przypadku izomeru orto, atom wodoru z grupy hydroksylowej leży blisko tlenu z grupy nitrowej i może pomiędzy nimi zachodzić słabe oddziaływanie nazywane wiązaniem wodorowym. W izomerze para taka sytuacja jest niemożliwa, a to z powodu zbytniego oddalenia grup. Wiązania takie mogą się jednak tworzyć między grupami hydroksylowymi jednych cząsteczek a grupami nitrowymi innych cząsteczek, przez co w ciele stałym tworzy się molekularna sieć. Fakt ten wpływa dość istotnie na właściwości fizyczne obu izomerów.
Wedle literatury [2] izomer para- topi się w temperaturze 112 °C, natomiast izomer orto- w zaledwie 46 °C - tak duża różnica jest spowodowania właśnie różną siłą związania cząsteczek ze sobą. No dobrze, mamy dwa związki, otrzymujemy je razem, w mieszaninie, i jak je teraz oddzielić? A bardzo prosto, i wykorzystujemy tu inną różnicę właściwości między izomerami - różnicę lotności z parą wodną.
Gdy skierujemy strumień gorącej pary wodnej na mieszaninę związków, jedne będą łatwo się wraz z nią ulatniać a inne trudno. Do takich łatwo lotnych nalezą olejki eteryczne kwiatów i innych części roślin, co pozwala na ich otrzymanie w stanie czystym, nadającym się do stworzenia zapachowej kompozycji perfum. Orto-nitrofenol z powodu luźniejszej struktury nie tylko jest łatwo topliwy ale i łatwo lotny, i można go oddzielić z wystarczającą selektywnością.

Po tym ogólnym wstępie czas na właściwą relację:

Wziąłem fenol mający postać jasnoróżowego proszku o bardzo intensywnym zapachu lizolu i stopiłem go z niewielką ilością wody. Do dwuszyjnej kolby wlałem stężony kwas siarkowy i chłodząc w krystalizatorze z wodą wsypałem Azotan (V) sodu, otrzymując mieszaninę nitrującą. Do środka wrzuciłem również mieszadełko magnetyczne, wyglądające jak podłużna tabletka, będące małym magnesikiem, i umieściłem na mieszadle. Gdy włączy się takie mieszadło, mały magnesik w kolbie zaczyna wirować, mieszając równomiernie ciecz i wyręczając chemika, który musiałby robić to ręcznie. Wygląda to tak.


Fenol

Do kolby podłączyłem duży wkraplacz i przelałem do niego stopiony fenol, mający postać malinowego płynu. Przez drugą szyję wprowadziłem termometr i zacząłem wkraplać płyn, cały czas sprawdzając czy temperatura nie przekracza 20 °C, w przeciwnym wypadku dolewałem do krystalizatora wodę lub dorzucałem lodu. Ta kontrola temperatury była potrzebna aby uzyskać tylko jednokrotnie znitrowany fenol, w wyższych bowiem powstaje wspomniany kwas pikrynowy, będący wszakże związkiem wybuchowym. Prowadzący zajęcia opowiadał nam, jak to kiedyś jedna ze studentek zagapiła się, i kolba się jej rozprysnęła w trakcie zajęć.
Gdy temperatura się ustabilizuje, a cały fenol zostanie dodany, zawartość kolby musi się mieszać i mieszać. Musi się mieszać bardzo i mieszać długo. Mieszać równomiernie i mieszać aż do znudzenia - dokładnie przez dwie godziny.

Gdy zawartość się już wymiesza i przereaguje, trzeba ją odstawić aż produkty, mające postać bordowo-brunatniej żywicy, oddzielą się od kwaśnego roztworu. Zawartość kolby wygląda wówczas tak:
Zawartość kolby po nitrowaniu

Kwaśny roztwór należy odlać i zmajstrować zestaw do destylacji z parą wodną. W mojej wersji wyglądał tak:



Zestaw do destylacji z parą wodną

A więc od lewej: kociołek do wytwarzania pary, mający wygląd metalowej butelki, stojący na palniku; szklana rurka zanurzona w kociołku o wolnym końcu, mająca zabezpieczać przed nagłymi skokami ciśnienia; specjalne doprowadzenie, wprowadzające strumień pary na dno kolbki; nasadka łącząca kolbkę z chłodnicą; chłodnica wodna Liebiega, będąca rurką otoczoną płaszczem w którym płynie zimna woda; i wreszcie odbieralnik, czyli zlewka na podwyższeniu, do której skapuje destylat. Bardziej czytelny rysunek.

Oddzielający się o-nitrofenol miał postać żółtego płynu. Gdy destylat stał się bezbarwny odstawiłem zlewkę na parapet aby produkt wykrystalizował. Miał postać długich, żółtych igiełek. Należało teraz przesączyć ciecz na lejku Buchnera pod zmniejszonym ciśnieniem, i na sączku został niemal czysty o-nitrofenol:


A co z p-nitrofenolem? Vogel, z którego "Preparatyki Organicznej" brałem przepis, podaje że pozostałość, po ochłodzeniu i odsączeniu, należy ogrzewać w temperaturze wrzenia z kwasem solnym i węglem aktywowanym, dla usunięcia barwnych zanieczyszczeń, przesączyć a przesącz odstawić do krystalizacji. Tego jednak na zajęciach nie robiłem. 
P-nitrofenol również ma postać jasnożółtego proszku, krystalizującego w postaci igiełek. W toku dalszych przemian można otrzymać z niego popularny lek przeciwgorączkowy - Paracetamol - stąd znaczenie jakie ma opisana synteza w przemyśle.


Gdy już otrzymało się preparat, należy go zważyć dla sprawdzenia sprawności preparowania. Vogel podaje sprawność 36%, lecz mi wyszło blisko cztery razy mniej. Najprawdopodobniej jest to wynik przegrzania, zbytnio bowiem szybko wkraplałem fenol do kolby, i nim lodem schłodziłem ją odpowiednio, temperatura podskoczyła do 30 stopni, więc część związku uległa dalszemu nitrowaniu a może i utlenieniu.

Dodatkowo należy zbadać, czy aby na pewno otrzymaliśmy dobry związek. O tym jak ważne może być takie sprawdzanie, przekonałem się będąc kiedyś na wycieczce szkolnej w laboratorium analizy elementarnej, gdzie usłyszałem anegdotę o doktorancie, który po kilku miesiącach skomplikowanej analizy dał im próbkę do potwierdzenia składu, i okazało się, że to nie to. Gdzieś popełnił błąd.

Taką prostą i szybką metodą jest porównanie temperatury topnienia otrzymanego związku z podawaną w literaturze. Aby to zrobić należy nabić niewielką ilością związku zatopioną z jednego końca kapilarkę:

Kapilarka nabita związkiem
 Aparatura do pomiaru jest nieskomplikowana, kapilarkę ze związkiem wsuwa się do podświetlanej komory z regulowanym ogrzewaniem, w której tkwi termometr. Kapilarkę obserwujemy przez okular. Podwyższamy powoli temperaturę i gdy kryształki zaczną się szklić, to jest nasączą się cieczą, sprawdzamy temperaturę i zapisujemy. Gdy związek całkowicie się stopi zapisujemy drugą temperaturę, otrzymując pewien przedział, w którym powinna się mieścić temperatura literaturowa.

W moim przypadku temperatura ta powinna wynosić 46 °C, jednak przedział jaki zmierzyłem, nie zgadzał się z tymi danymi - wyniósł 36-40 °C. Najpewniej to wynik wspomnianego przegrzania.

Komora topnienia. Po prawej - związek stały, po lewej stopiony.

Jednak pomiar temperatury jest jak widać niewystarczający, dlatego pozostałą część substancji bada się spektrometrycznie za pomocą aparatury NMR. Jeśli w otrzymanym wykresie występują takie piki jakie podaje literatura, to mamy pewność, że rzeczywiście otrzymaliśmy związek jaki był nam potrzebny.
 
I tak skończyłem syntezę. Należało tylko zmienić ubranie i wykąpać się, bo zaśmiardłem fenolem jak ze szpitala.

---------------------
Przypisy:
[1] - Zwykle obrazuje się to jako przeskok elektronu i pękniecie jednego z wiązań podwójnych pierścienia. Ponieważ do utworzenia wiązania potrzebne są dwa elektrony, po jego pęknięciu zostaje jeden niesparowany, stanowiący ów wolny ładunek. Ponieważ jednak trzy wiązania podwójne są rozmyte na cały pierścień, i każde jest niejako półtorakrotne, rzeczywista sytuacja jest trochę trudniejsza do opisu i sprowadza się do zwiększenia gęstości ładunku ujemnego w trzech miejscach.

[2] - Vogel Arthur Israel, "Preparatyka organiczna" Wydawnictwo WNT 2006 Wydanie III zmienione. - Gruba, ponad tysiącstronnicowa kniga, prawdziwa biblia preparatyków. Wszystkie dane i odniesienia dotyczą tego wydania.

Ilustracje wzorów pochodzą z Wikipedii. Zdjęcia moje.

czwartek, 17 marca 2011

Co z tym jodem?

Pierwotnie zamierzałem pierwszą notkę poświęcić fotorelacji z przeprowadzanej na zajęciach syntezy, ale w ręce sam wpadł mi doskonały temat. Dlatego będzie o tym, co ma jod do skażenia promieniotwórczego.

Tragiczne trzęsienie ziemi w Japonii i wywołana nim fala tsunami okazały się jedną z największych katastrof ostatnich lat. Na pewno zginęło kilka tysięcy ludzi, a wiele tysięcy uważa się za zaginione. Jednak największe przerażenie wywołała seria poważnych awarii w japońskich elektrowniach atomowych. Świat wciąż jeszcze pamięta o Czarnobylu, nic zatem dziwnego, że wszyscy obawiają się powtórki z historii. W informacjach na ten temat pojawił się wątek będący bezpośrednim powodem dla którego rozpoczynam ten temat, mianowicie informacja o "panice solnej" w Chinach. Jak podaje Onet:
Niektórzy mieszkańcy Państwa Środka wierzą, że zawierająca jod sól, uodparnia na promieniowanie radioaktywne. W czwartek w supermarketach w wielu chińskich miastach zabrakło jej. Pojawiły się również plotki, że radioaktywne substancje już przedostały się z elektrowni Fukushima do wody, wywołując skażenie, w efekcie czego sól morska będzie niezdatna do użycia.
Czytelnicy starsi ode mnie pamiętają zapewne rok 1986 i gorączkowe podawanie dzieciom obrzydliwego w smaku Płynu Lugola, zawierającego duże ilości jodu, dla zapobieżenia szkodliwemu wpływowi radioaktywnej chmury, jaka nadleciała nad Polskę w kilka dni po katastrofie Czarnobylskiej. Jednak dlaczego akurat Jod? I czy jego zażywanie może uchronić nas przed skażeniem? Zanim do tego dojdziemy, czas przedstawić naszego bohatera.

Jod jest niemetalicznym pierwiastkiem chemicznym z grupy fluorowców o liczbie atomowej 53, podobnym do chloru czy fluoru, jednak zdecydowanie mniej od nich reaktywnym. W przeciwieństwie do pozostałych pierwiastków z tej grupy, w stanie wolnym jest ciemnoszarym ciałem stałym o grafitowym połysku. Łatwo lotny, w podwyższonej temperaturze zamienia się w ciemnofioletową parę, co zachodzi bez topnienia na drodze sublimacji. Pary jodu zestalają się na chłodnych powierzchniach, co wykorzystuje się do jego oczyszczania. Stosunkowo szeroko rozpowszechniony w przyrodzie, nie tworzy jednak własnych minerałów, z uwagi na dużą rozpuszczalność związków. Przemysłowo otrzymuje się go z saletry chilijskiej zawierającej, oprócz azotanu (V) potasu, domieszki jodków i jodanów potasu, oraz z wody morskiej gdzie występuje w większych ilościach. Zużywa się go głównie do produkcji leków, barwników, a także filmów fotografii analogowej, choć wobec rozpowszechnienia technik cyfrowych coraz bardziej traci na znaczeniu. Jednak najważniejsze jest jego działanie biologiczne.
Jod jest niezbędnym mikroelementem, potrzebnym organizmowi do wytwarzania dwóch ważnych hormonów tarczycowych : Tyroksyny i Trójjodotyroniny. Odpowiadają one za prawidłowy przebieg przemiany materii, regulują pracę serca i przysadki mózgowej, regulują poziom glukozy we krwi i wydzielanie neuroprzekaźników, duże znaczenie ma też ich stymulujące działanie na rozwój ośrodkowego układu nerwowego, zwłaszcza we wczesnym okresie rozwoju. Niedobór jodu w diecie wywołuje zatem ich niedostateczne wydzielanie. Organizm próbuje przeciwdziałać temu, zwiększając aktywność tarczycy będącej gruczołem T3 i T4, czego zewnętrznym objawem jest jej powiększenie, tzw "wole endemiczne":

Kobieta z wolem endemicznym
Jest to oczywiście skrajny przypadek, dotyczący nieleczonej choroby. Znacznie groźniejsze są powikłania związane z niedoborem jodu w kobiet w ciąży, wówczas bowiem dojść może do nieodwracalnych zmian rozwojowych u płodu, określanych mianem Kretynizmu. Dziecko dotknięte kretynizmem cierpi na znaczny niedorozwój umysłowy, częściowo również fizyczny. Przebieg schorzenia można łagodzić przez podawanie jodu bądź hormonów tarczycowych, lecz raz zaistniałe zmiany nie ulegną cofnięciu.
Niedobór jodu występuje na terenach, w których jego zawartość w glebie jest niska. W przypadku Polski dotyczy to niestety przeważającej części jej powierzchni, z wyjątkiem wąskiego pasa nadmorskiego, gdzie jod z wody morskiej dociera pod postacią aerozolu, dlatego większość polaków jest zagrożona niedoborem. Szczególnie silny niedobór dotyczy terenów podgórskich. Skalę zjawiska oddają badania z lat 1992-93 , kiedy to co setne dziecko rodziło się z powiększeniem tarczycy, zaś u jednego na 4 tysiące występowały pierwsze objawy kretynizmu związanego z niedoczynnością. Jod zawarty w jedzeniu nie wystarczał, zaś specjalnej jodowanej soli używał tylko co czwarty polak. Dlatego właśnie od 1997 roku obowiązkowo każdy rodzaj soli spożywczej musi zawierać domieszkę jodu. Od tego czasu częstość występowania wola endemicznego i wiążących się z tym powikłań spadła drastycznie (tu polecam dobry artykuł na ten temat na Globalnym Śmietniku).

No dobrze, tylko co to wszystko ma wspólnego ze skażeniem promieniotwórczym i z Czarnobylem? Już wyjaśniam. Produktami kontrolowanego rozszczepiania jąder Uranu, do jakiego dochodzi w reaktorach atomowych, są lżejsze pierwiastki, w tym wiele izotopów promieniotwórczych. Do szczególnie groźnych należy tu izotop Jodu-131, stanowiący kilka procent odpadów reaktorowych. Jod występujący w naturze ma masę atomową równą 127 i jest pierwiastkiem trwałym. Jego groźny, cięższy krewniak rozpada się nadzwyczaj łatwo - czas półtrwania wynosi 8 dni, co oznacza, że z każdego grama po 8 dniach zostaje pół, po kolejnych 8 dniach - ćwierć, po następnych 8 dniach - ósma itd aż do zupełnego zaniku. Przez ten czas jednak emituje silne promieniowanie beta.
W świetle wszystkiego co napisałem powyżej powinno być jasne, że Jod, jako łatwo lotny pierwiastek chętnie ulatniał się do atmosfery podczas tak poważnej awarii, jaką był kilkudniowy pożar prętów paliwa jądrowego w reaktorze. Gdy wiatr przemieścił go nad obszar naszego kraju, od dawna cierpiące na powszechny niedobór organizmy obywateli zaczęły wchłaniać go i wbudowywać w tarczycę, gdzie osiągał koncentrację wystarczającą, aby doprowadzić do uszkodzenia tego narządu, a w dalszej perspektywie ryzyko nowotworu. Właśnie temu zapobiegać miał Płyn Lugola. Gdy organizm jest wysycony jodem w potrzebnej ilości, nie przyjmuje naddatkowych dawek, więc podanie roztworu zapobiegło wchłanianiu promieniotwórczego izotopu.

Taki jest właśnie sens podawania jodu. Zapobiegnie on tylko i wyłącznie uszkodzeniu tarczycy pod wpływem promieniotwórczego izotopu. W żadnym razie nie spowoduje uodpornienia na promieniowanie, nie ma zatem też żadnych własności ochronnych. Jeśli na takiego "najodowanego" człowieka opadnie Stront-90, również należący do produktów rozszczepienia uranu, to zapadnie na chorobę popromienną tak samo jak ten z wolem. Piszę o tym nie po to, aby wzbudzać niepokój u tych, który sądzili że na Japonię jodowana sól wystarczy - przeciwnie, sądzę że cała ta katastrofa zostanie opanowana, gdy zaś temat przygaśnie, w pamięci wielu osób pozostanie błędne przekonanie o nadzwyczajnych własnościach ochronnych jodu.
Niestety pojawiają się już sygnały świadczące, że próbuje się wykorzystać tą niewiedzę i żeruje na zainteresowaniu jakie wzbudza katastrofa, oto bowiem Monitor Polski informuje:

NOSE (dawna robocza nazwa A-FLUSIMINE 09) to donosowy aerosol zawierający mikroelementy pozyskane w wyniku jodkowo-potasowej maceracji pęków kwiatów goździków, wydatnie wspomagający układ odpornościowy w walce z infekcjami wirusowymi u stosujących go osób. (...)
5.) w naturalny sposób chroni organizm przed powikłaniami napromieniowania organizmu po dużych ekspozycjach promieniowania alfa, beta i gamma, niebezpiecznych dla zdrowia i życia ludzkiego.
Krótko mówiąc jest to preparat z goździków które moczyły się w wodzie z jodowaną solą, mający być przewspaniałym lekiem na grypę i inne przeziębienia a dzięki zawartości jodu mającym chronić przed wszelkim promieniowaniem - co w świetle powyższego jest oczywistą bzdurą. Zapewnienia, że to, iż preparat wpłynął pod inną nazwą tuż po kataklizmie w Japonii, nie jest ze strony producenta próbą wykorzystania całej historii, brzmią zupełnie niewiarygodnie.

---
Źródła (oprócz podawanych) :
*"Zbawienna szczypta soli", Rzeczpospolita 27 wrzesień 1994
* Szwedzki Państwowy Instytut Ochrony przed Promieniowaniem
* Wikipedia - Isotopes of Iodine
* Wikipedia - Kretynizm
* Wikipedia - Triiodothyronine

środa, 16 marca 2011

Witam

Witam serdecznie wszystkich, który oglądają teraz tą stronę. Jestem Kuba Grom i właśnie założyłem swój pierwszy blog.

Jestem studentem II roku Chemii na Uniwersytecie Przyrodniczo-Humanistycznym w Siedlcach, na specjalności Chemia Analityczna. Chemią interesują się już od dawna. Przeglądając najrozmaitsze blogi zauważyłem niemal całkowity brak poświęconych chemii. Jest kilka chlubnych wyjątków, w tym blogi dość profesjonalne, prowadzone przez naukowców, jednak wszystkie które nie zakończyły swej działalności na kilku postach policzyć można na palcach jednej ręki.
Mój blog nie pretenduje do miana profesjonalnego. Jego zadaniem jest zbierać wrażenia jakich doznaję obcując z tą Nauką. Będę tu umieszczał zdjęcia dokumentujące przeprowadzone na pracowniach doświadczenia, oraz rozmaite ciekawostki dotyczące chemii i okolic. Będę piętnował i objaśniał zauważone w mediach błędy i pomyłki. Nieraz będę wkraczał na terytoria takich dziedzin jak medycyna, fizyka czy biologia po to, aby odnieść się do niektórych chemicznych aspektów danego tematu. Planuję tu, jeśli cierpliwości i pomysłowości starczy, publikować artykuły popularnonaukowe o szczególnie interesujących odkryciach, oraz sceptyczne, odnoszące się do używania rozmaitych chemikaliów jako cudownych leków na wszystkie choroby.

Nazwa bloga - Nowa Alchemia - bierze się z luźnej myśli. Chemia jest dziś przecież nauką cudowną, zdolną syntezami przemienić bezużyteczne materiały w cenne, niejednokrotnie droższe od złota substancje, znajdujące wiele jakże potrzebnych zastosowań w codziennym życiu. I właśnie z tego zadziwienia wziął się ten blog.