informacje



wtorek, 20 marca 2012

I kto tu kogo kołuje?

Na portalu finanse.wp.pl pojawił się artykuł, w którym porównując skład napojów energetycznych można dojść do wniosków, że są prawie identyczne. Akurat dla mnie to żadna nowina, i byłbym zapomniał o sprawie, gdyby nie pewien intrygujący fragment:

Poza tym niemal wszystkie mają te same składniki dodatkowe. które dla pobudzania organizmu do pracy mają już dużo mniejsze znaczenie. Chodzi o niacynę, kwas pantotenowy, witaminy B6 i B12 oraz inozytol. Te produkowane za granicą (Bullit, RedBull i Burn) dodatkowo w składzie mają glukuronolakton - stymulant wymyślony przez amerykańską armię, który w dużych ilościach ma działanie halucynogenne (zakazano go m.in. we Francji).[1]
Problem w tym, że to nie dosyć że bzdura, to jeszcze zdemaskowana już dosyć dawno. Fałszywka omawiająca jakie to okropne, szkodliwe i rakotwórcze są takie produkty jak Actimel i Red Bull krąży w sieci od paru lat, zaś część dotycząca napojów energetycznych zaczęła być zapewne kompilowana około 2000 roku[2] Tam też znalazła się informacja, że lakton kwasu glukuronowego został wymyślony przez amerykańską armię, że był halucynogennym stymulantem podawanym żołnierzom w Wietnamie, i że to on odpowiada za problemy zdrowotne weteranów. Tymczasem prawda jest prozaiczna, zarazem jednak na tyle ciekawa, że przy okazji wytłumaczę czym jest ów kwas i co to są laktony.

Cukry, inaczej węglowodany, to związki organiczne w których do każdego, lub prawie każdego z węgli w łańcuchu podczepiona jest grupa hydroksylowa, jedynie na jednym z końcowych musi się znajdować grupa aldehydowa lub ketonowa. A zatem ów jeden węgiel jest utleniony bardziej niż reszta. Decyduje to o wielu właściwościach, przykładowo końcowa grupa karbonylowa może zareagować z jedną z grup alkoholowych, tworząc pierścieniowy hemiacetal. Mogą być jednak przekształcane w inny sposób. Jeśli zredukujemy końcową grupę otrzymamy polialkohol, o słabszym ale zwykle wyczuwalnym słodkim smaku. Znany miłośnikom zdrowej żywności Ksylitol, jest takim właśnie pięciowęglowym polialkoholem, otrzymywanym przez redukcję ksylozy - cukru występującego w długich łańcuchach w twardych tkankach roślin, w tym w drewnie, słomie i korze. Powszechna nazwa ksylitolu jako cukru brzozowego, sugerująca coś w rodzaju naturalnej substancji otrzymywanej z oskoły może zatem wprowadzać w błąd, bo aby go otrzymać, najpierw trzeba gotować z rozcieńczonymi kwasami drewno, aby zhydrolizować łańcuchy ksylanowe, a potem wyodrębnioną ksylozę zredukować wodorem pod ciśnieniem. Najczęstszym źródłem "cukru brzozowego" są obecnie łodygi kukurydzy lub wytłoczyny trzciny cukrowej.
Jeśli w podobny sposób zredukujemy glukozę, otrzymamy sorbitol.

Grupa karbonylowa może jednak zostać równie łatwo utleniona. Powstaje wówczas grupa karboksylowa charakterystyczna dla kwasów karboksylowych. Kwasy takie, z utlenioną tylko jedną końcową grupą, to kwasy aldonowe, które nas akurat mniej interesują, jeśli natomiast uda nam się utlenić grupę hydroksylową na drugim końcu cząsteczki, nie naruszając grupy karbonylowej, otrzymamy kwasy uronowe. W tym przypadku z glukozy otrzymujemy właściwy jej kwas gluk-uronowy.


Produkty utleniania glukozy. Kropkami zaznaczyłem utleniane atomy
Kwas glukuronowy występuje naturalnie i jest wytwarzany w naszym organizmie w wątrobie, jego głównym zadaniem jest pomoc w procesach detoksykacji. Wiele toksyn jest słabo rozpuszczalnych w wodzie, dlatego organizm musi je przeprowadzić w łatwiejszą do wydalenia formę. Toksyny, takie jak bilirubina i związki sterolowe, a także wiele leków, są sprzęgane za pomocą wiązania glikozydowego do łatwo rozpuszczalnych glukuronidów i w takiej postaci wydalane wraz z moczem - tam też po raz pierwszy go odkryto co zaowocowało nazwą tego typu kwasów ("uronowe" od uryny). U wielu zwierząt związek ten jest też prekursorem do wytworzenia kwasu askorbinowego, w związku z czym formalnie rzecz biorąc, nie jest on dla nich witaminą C, w odróżnieniu od człowieka, który takiej reakcji nie umie przeprowadzić. Spożyty nie pobudza ani nie wywołuje żadnych skutków psychofizycznych.

A lakton? Lakton jest wewnętrznym estrem. Taki kwas glukuronowy zawiera z jednej strony grupę karbonylową a z drugiej grupę alkoholową, które mogą ze sobą reagować, dając cykliczny produkt. W tym przypadku reakcja z grupą przy czwartym węglu, daje pięciokątny pierścień.

Po co zatem związek, nie mający działania pobudzającego, jest dodawany do takich napojów? Na stronie producenta nie mamy na ten temat nic konkretnego[3] Teoretycznie powinien wspomagać odtruwanie organizmu z ksenobiotyków, na przykład z nadmiaru kofeiny występującego w takich produktach, ale to sprzęganie ma miejsce dopiero w wątrobie. Żeby zażywanie glukuronianów miało dawać ten sam efekt, nie jest takie pewne. Najprawdopodobniej dodaje się go w takiej właśnie zlaktamizowanej formie, aby reakcja sprzęgania z kofeiną nie zachodziła już w puszce, co zmniejszałoby działanie pobudzające.

Cała ta historia z narkotycznym działaniem związku, może mieć swe źródło w nieporozumieniu, a konkretnie w pomyłce z innym związkiem - Gamma-butyrolaktonem. Jest to związek o działaniu uspokajającym, dającym wrażenia podobne jak po spożyciu alkoholu, zaś w większych dawkach powoduje utratę przytomności. W organizmie jest metabolizowany do kwasu gamma-hydroksymasłowego (GHB), będącego częstym składnikiem "pigułek gwałtu". Niby i to lakton i to, ale to dwie różne substancje.

Czy w związku z tym, że ta okropnie brzmiąca substancja, którą nas straszą, okazała się nieszkodliwa, to czy napoje energetyczne są zdrowe? Tego bym nie powiedział. Na pewno nie są trujące, ale nie sądzę aby regularne zażywanie uderzeniowych dawek kofeiny i cukru, w sytuacji gdy nie uprawiamy intensywnie sportu, było obojętne dla zdrowia. Czasem rzeczywista zawartość kofeiny nie zgadza się z podawaną na etykiecie, wprawdzie bowiem napój może zawierać maksymalną dopuszczaną dawkę 400 mg, ale często zawiera takie naturalne dodatki jak żeń-szeń czy guarana, a obie te rośliny zawierają kofeinę. Tak samo jak mocna kawa, mogą źle działać na serce. Zresztą picie ich przy wysiłku fizycznym wprawdzie poprawia sprawność i wyczynowość, ale nie uzupełnia mikroelementów (większość nie jest izotoniczna) wypacanych przez skórę, co może prowadzić do zaburzeń elektrolitowych.

Raz wypiłem Red Bulla ale nie zadziałał - zachciało mi się po nim spać.

Pozostaje jeszcze na koniec pytania, kto też pisze artykuły do takich portali jak wp.pl skoro przy okazji wykazywania innym krętactw, sam się ich dopuszcza?
----------
[1] http://finanse.wp.pl/kat,98674,title,Test-energetykow-tak-nas-koluja,wid,14326411,wiadomosc.html
[2] http://atrapa.net/chains/actimeliredbull.htm
[3] http://www.redbull.pl

piątek, 16 marca 2012

To już rok!

Rok temu, 16 Marca, założyłem bloga i wpisałem powitalną notkę. Jak to ten czas zleciał.

Przystępując do tego nie byłem pewien, czy podołam. Mogło się w pewnym momencie okazać, że po prostu nie wystarcza mi czasu, albo pomysłów, i blog stałby się jednym z tych licznych, opuszczonych, w połowie powstrzymanych, jakie wypełniają mroczne zakątki internetu. Na szczęście pomysłów nie brakuje, i choć czasem nie mogę się zmobilizować aby przebrnąć przez bardziej obszerne teksty, to przecież mogę zawsze dorzucić coś z fotograficznych archiwów.
Od początku moim założeniem było pisać teksty własne, czerpiące z różnych źródeł. Liczne powstające blogi, działające na zasadzie kopiuj/wklej z Wikipedii są dla mnie niezrozumiałe - po co komu przeglądać takie wpisy, skoro w lepszej jakości i z klikalnymi linkami może to samo zobaczyć na stronie źródłowej? Dlatego też często sprawdzam jedną informację w wielu miejscach, kompilując swe teksty

Częstotliwość postowania jest u mnie nieregularna - od dwóch wpisów w Czerwcu do siedmiu w Kwietniu, jak na razie jednak ukazało się 50 notek. Jest też parę napoczętych, do których nie mogę się jakoś przybrać, w każdym razie następny będzie o pewnym składniku napojów energetycznych, o którym krążą po świecie różne absurdalne pogłoski.

A teraz czas na trochę statystyk:

Dotychczas zanotowałem około 28 600 wejść na bloga, z czego około 300 to moje wejścia z innych komputerów. Głównie są to oczywiście wejścia z komputerów zarejestrowanych w Polsce, choć wewnętrzne statystyki pokazują mi też blisko półtora tysiąca wejść z Wielkiej Brytanii i siedemset z USA. Pięć najpopularniejszych postów to:
* Ten straszny benzoesan! - 1711
* Poison story (2.) - cyjanek -1652
* Otrzymywanie o i p-nitrofenolu - 1346
* Błękitne mundury i cyjanek w soli - 1313
* Poison Story (1.) - Stalinon - 1271
Jeśli chodzi o strony z których ludzie wchodzą na bloga, to oczywiście najwięcej wejść jest bezpośrednio z Google, zaraz po tem przychodzą takie strony jak Wykop.pl (3290 wejść) i Klikd.pl (1400), gdzie w ostatnich miesiącach kilku użytkowników intensywnie mnie poleca, za co im bardzo dziękuję. Kolejnym miejscem częstych wejść jest Blog de Bart (1136), gdzie nieoczekiwanie znalazłem się w blogpasku. Z podobnych przyczyn częste są wejścia z bloga New Chemistry, czy Laboratorium dra Dawidoffskiego, natomiast wejścia z Cudownych Diet są wynikiem mojej działalności w komentarzach.
Obecnie notuję około 150-200 wejść dziennie, gdy zaś zostanę polecony na Wykopie lub Klikdzie, wskutek znanego wszystkim efektu zaliczam po kilkaset odwiedzin. Głównie z tej przyczyny przez kilka miesięcy, aż do stycznia, miesięczna przeglądalność wzrastała u mnie w przybliżeniu ekspotencjalnie:

Artykuły komentowano 70 razy, nie licząc moich odpowiedzi, czasem podpowiadając różne zauważone przez przeglądających nieścisłości czy pomyłki w tekście.
Najczęściej użyte przeze mnie tagi tematyczne, to Z laboratorium, bzdury, zdjęcia, związki aromatyczne, związki kompleksowe, Chemia i życie, chromatografia, zdrowie, srebro.

A co tam u mnie? Nadal studiuję Chemię na UPH w Siedlcach, na trzecim roku, w związku z czym zastanawiam się, co takiego zrobić gdy skończę licencjat. Jak na razie nie mam powodu aby się gdzieś przenosić, więc zapewne zostanę jeszcze na studiach magisterskich. Jeszcze nie wybrałem kierunku, mogą to być studia analityczne, co byłoby kontynuacją kierunku, ale i chemia nieorganiczna nie wydaje się taka zła, się zobaczy.

A plany? Oczywiście dokończyć tych parę zaległych notek, pojawią się też następne odcinki Poison Story, które jak widać mają dużą popularność, choć doprawdy nie wiem ca co się tu złapać, bo informacji jest aż nadmiar - w samych zatruciach arszenikiem można przebierać jak w ulęgałkach, bo mamy i zatrucia zbiorowe i indywidualne; zbrodnicze, samobójcze i przypadkowe; w wodzie, w chlebie, w cukierkach i w zasypce dla niemowląt, słynne sprawy i zapomniane przypadki, w każdym razie o jakimś metalu ciężkim będzie i to niekoniecznie o znanym. Z tematów mitów chemicznych na pewno napiszę coś o amigdalinie. W prawdzie temat omawiano już na wielu blogach, czasem zbyt prześmiewczo a czasem zbyt nerwowo, ale nie tak jak ja zwykłem.

Jeśli macie jakieś uwagi do starych i nowych notek, czy propozycje, to możecie je podać w komentarzu do tej notki. W każdym razie, za wszystko Wam dziękuję.

poniedziałek, 12 marca 2012

Elektroforeza DNA

Mam w tym roku zajęcia z biochemii i oczywiście dokumentuję wykonywane ćwiczenia, a niektóre są bardzo ciekawe. Ostatnio przerabialiśmy elektroforezę. W zasadzie główne ćwiczenie dotyczyło elektroforezy białek na żelu PAG, ale to nie zbyt się nam udało. Równocześnie jednak prowadzący zajęcia postanowił pokazać nam coś ekstra a mianowicie elektroforezę DNA - a więc taki typ badania, z którego korzysta się na przykład przy ustalaniu ojcostwa.

Elektroforeza
to technika analityczna w dużej mierze zbliżona do chromatografii, w niektórych podręcznikach klasyfikowana jako jeden z jej działów. Zasadniczo główną zasadą rozdziału mieszanin jest tu skorzystanie ze zjawiska ruchu jonów w polu elektrycznym. Każda cząstka naładowana znalazłszy się w polu elektryczny zaczyna być przyciągana w kierunku elektrody o przeciwnym znaku. Aniony zbliżają się do dodatnio naładowanej anody a kationy do ujemnie naładowanej katody. Już to może stać się podstawą rozdziału prostych substancji, bardzo ładny przykład widać w tym filmiku, gdzie żółty anion chromianowy oddziela się od niebieskiego katjonu kompleksowego tetraaminamiedzi. Zasadnicza różnica między migracją jonów a elektroforezą jest ta, że w tym drugim przypadku wędrują duże cząsteczki naładowane, na przykład stałe cząstki koloidu, wielkomasowe białka albo takie cząsteczki jak kwas deoksyrybonukleinowy.
Sam ruch cząstek nie miał by wielkiego znaczenia dla analityki, gdyby nie fakt, że różne cząsteczki poruszają się z różną prędkością. W zasadzie szybkość ruchu jest tym większa, im większy niesie ładunek, i tym mniejsza im większa jest to cząsteczka. Pewne znaczenie ma też kształt oraz inne oddziaływania z ośrodkiem, którym może być roztwór lub specjalny żel, rzadziej bibuła.

Jak to ma się jednak do badania DNA? Przecież w każdej komórce jest jedna, taka sama cząsteczka, co tu więc do rozdzielania? Dobre pytanie. Biolodzy też długo nie mogli wpaść na to jak to zrobić, aż wreszcie ktoś odkrył enzymy restrykcyjne i wszystko stało się jasne.
Restryktazy to specyficzne enzymy wytwarzane przez bakterie i sinice, zapewne jako mechanizm obronny przed wirusami. Rozcinają one łańcuch DNA na obu niciach w miejscu w którym pojawia się specyficzna sekwencja zasad nukleinowych. Na przykład enzym EcoR I rozcina DNA w miejscu komplementarnych sekwencji GAATTC i CTTAAG, enzym Taq I w miejscu TCGA i AGCT, zaś Not I w miejscu GCGGCCGC i CGCCGGCG. Jak łatwo się domyśleć, ponieważ różne osoby mają różne geny, po rozcięciu ich DNA postanie nam mieszanina fragmentów i różnej długości i wielkości frakcji.

Powiedzmy że mamy łańcuch o zasadach: CCCAGAGGCCTTCTGGAGGAGTTGTTATCCTCGAAGACCACCGTTGACAGATT
i trzy enzymy, jeden rozcina łańcuch w miejscu AGA, drugi w GTTG a trzeci w TCCT.
Po zmieszaniu roztworu łańcucha z pierwszy otrzymamy mieszaninę fragmentów:
-ATT
-CCCAG
--ACCACCGTTGACAG
-AGGCCTTCTGGAGGAGTTATTGTCCTCGAAG

Z drugim:
-CCCAGAGGCCTTCTGGAGGAGT
-TGTTATCCTCGAAGACCACCGT
-TGACAGATT

Z trzecim:
-CCCAGAGGCCTTCTGGAGGAGTTGTTATC
-CTCGAAGACCACCGTTGACAGATT

Im dłuższy fragment tym wolniej będzie się poruszał a więc tym bliżej znajdzie się miejsca naniesienia. Jeśli więc weźmiemy naszą próbkę łańcucha, potraktujemy osobno trzema enzymami i naniesiemy na płytkę, to otrzymamy w przybliżeniu coś takiego:

Jeden enzym dał dwa długie fragmenty, drugi dwa długie i jeden krótki a trzeci cztery różnej długości. Jeśli dysponujemy długim łańcuchem i porozdzielamy go kilkoma lub kilkunastoma enzymami, otrzymamy na płytce wzór składający się z prążków o różnym przesunięciu i natężeniu, a liczba wszystkich możliwych kombinacji jest olbrzymia. W badaniach DNA zakłada się, że dla różnych ludzi wzór utrwalony na płytce będzie różny, stąd możliwość identyfikcji tożsamości lub pokrewieństwa.

W naszym pokazowym doświadczeniu procedurę mieliśmy już o tyle uproszczoną, że próbką badaną był wzorcowy roztwór pociętego DNA plazmidowego, pozostawało nam zatem przygotować płytkę i nanieść próbkę. Ten typ badania standardowo wykonuje się w żelu agarozowym. Agaroza to właściwy środek żelujący wyodrębniany z agaru naturalnego. Przygotowanie jest dosyć proste. Odważoną ilość agaru należało rozpuścić w gorącym roztworze zasadowego buforu, dodać odczynnika barwiącego kwasy nukleinowe i przelać do odpowiedniej kuwety, wkładając przed zatężeniem plastikowy "grzebień". Po zastygnięciu w miejscu grzebienia pozostają równe zagłębienia, stanowiące kuwetki na próbki:

Po oznaczeniu spektrofotometrycznie stężenia wzorca i po zmieszaniu go z roztworem barwnika należało pobrać go mikropitetą i wkroplić do zagłębień. Cała płytka była już wtedy zalana roztworem elektrolitu, dlatego nieco cięższy roztwór próbki należało bardzo ostrożnie umieścić w zagłębieniach, tak aby nie wypłynął - co nie było wcale takie łatwe. A potem należało włączyć prąd i poczekać. Jako że mamy tu do czynienia z kwasem organicznym, należy oczekiwać że w środowisku zasadowym na resztach fosforanowym pojawią się ładunki ujemne, a zatem cała cząsteczka będzie wędrowała ku dodatnio naładowanej anodzie.

DNA jest bezbarwne, jak więc ujawnić prążki frakcji? Zajął się tym dodany do żelu odczynnik, którym był w tym przypadku bromek etydyny, związek organiczny mającego skłonność do tworzenia trwałych kompleksów z DNA, wpasowując się pomiędzy nicie. W związku z tym przy pracy z nim należało zachować ostrożność, łatwo bowiem wchłania się przez skórę a z racji właściwości jest silnym mutagenem. Bromek ma też tą właściwość, że wyraźnie świeci w świetle ultrafioletowym. Dlatego po odczekaniu odpowiedniego czasu wyjęliśmy żel z płytki i w zaciemnionym pomieszczeniu podświetliliśmy ultrafioletem, ujawniając nieco może niewyraźne ale widoczne prążki frakcji.

Nie próbujcie tego w domu...

niedziela, 4 marca 2012

Dzisiaj w... kuchni

Gdy młody chemik zostaje sam w domu, przychodzą mu do głowy różne dziwne pomysły. Na przykład ja dzisiaj postanowiłem przeprowadzić w kuchni bardzo proste a zarazem efektowne doświadczenie. Mianowicie przy pomocy bardzo prostych materiałów utworzyłem ogniwo elektrochemiczne przy pomocy którego oczyściłem poczerniałe srebro. Jak tego dokonałem?

Może jednak zacznę od innej strony, mianowicie od czernienia srebra. Srebro, choć metal szlachetny, jest jednak wciąż jeszcze dosyć reaktywne i może ulegać korozji. Przykładowo w powietrzu zawierającym chlorki, na przykład w okolicach nadmorskich, gdzie unosi się przywiewany od morza aerozol słonej wody, na powierzchni metalu tworzy się warstwa chlorku srebra. Ponieważ związek ten ma większą objętość niż metal i jest nie zbyt spoisty, tworzy rogową powłoczkę zacierającą szczegóły powierzchni, o ciemnobrązowym kolorze. Powłoczka powstająca na przedmiocie zakopanym w zasolonej ziemi jest biała i po wyjęciu szybko ciemnieje wskutek rozkładu pod wpływem światła. W jego wyniku powstaje srebro ale nie w postaci powłoczki metalicznej lecz w formie drobnych, łatwo ścieralnych cząstek.
Natomiast w większości przypadków niezabezpieczone przedmioty srebrne żółkną, brązowieją czy wręcz czernieją na powietrzu oraz w kontakcie z żywnością. Miałem okazję obserwować to gdy posrebrzane łyżeczki czerniały po zjedzeniu nimi jajek na miękko. Również te, które długo leżały w szufladzie, pokrywały się ciemną, dobrze przylegającą warstewką. Wiąże się to z obecnością w powietrzu niewielkich ilości siarkowodoru, powstającego w wyniku gnicia materii białkowej, lub spalania zasiarczonych paliw i kopalin. Siarkowodór reaguje ze srebrem tworząc siarczek:
4Ag + 2H2S + O2 = 2Ag2S + H2O

o kolorze czarnym. Warstewka siarczku dobrze przylega do metalu i nie zaciera rzeźbień, stąd też niekiedy srebro specjalnie czerni się dla przyozdobienia, aby po starciu nalotu z wypukłych miejsc uwydatnić relief. Co jednak, jeśli nasz przedmiot zbrązowiał, w dodatku bardzo nierówno, z jaśniejszymi plamkami w miejscach zatłuszczeń?

Przypomniałem sobie dziś , że gdzieś w szufladzie jest jeszcze kilka posrebrzanych łyżeczek z dawno zdekompletowanego zestawu. Gdy do nich zajrzałem stwierdziłem, że są mocno pociemniałe, a że miałem chętkę do eksperymentów postanowiłem trochę je odczernić. Ponieważ tworzenie siarczku jest w istocie reakcją utlenienia srebra, można ją cofnąć przeprowadzając redukcję, na przykład zestawiając ogniwo elektrolityczne, w którym srebrny przedmiot jest katodą. Można by to przeprowadzać podłączając przedmiot do baterii ale istnieje prostszy sposób.

Jak wiadomo już od czasów Volty, dwa różne metale, zanurzone w elektrolicie i połączone ze sobą, utworzą ogniwo. Wiąże się to z tym, że metale przyjmują w roztworach pewien potencjał, mogąc posiadać nadmiar lub niedobór elektronów. Jeśli je połączymy elektrony będą spływać z metalu który ma ich dużo, do metalu który ma ich za mało - popłynie prąd. Na tej zasadzie opierają się baterie i akumulatory. Oczywiście elektrony nie biorą się znikąd - na powierzchni obu metali zachodzą reakcje, na jednym utlenianie, czyli dezelektronacja, przez co metal przyjmuje elektrony, na drugim redukcja czyli elektronacja, zatem elektrony są z metalu pobierane. Aby srebro, metal szlachetny o wysoce dodatnim potencjale stało się katodą, trzeba je zestawić z metalem aktywnym, o niższym potencjale, a jeśli metal będzie bardzo aktywny, to reakcja będzie przebiegała bardzo szybko. Wybrałem glin.

Wyłożyłem talerz arkuszem folii aluminiowej, nalałem wody i dosypałem soli kuchennej, aby utworzyć dobrze przewodzący roztwór, dla przyspieszenia reakcji dodałem też szczyptę sody. Na wypadek gdyby folia była czymś fabrycznie pokrywana, wrzuciłem tam jeszcze starą aluminiową 50-groszówkę (wybijano takie za PRL - są tak lekkie, że pływają po wodzie), odtłuszczoną w płynie do naczyń. Następnie wziąłem kilka pociemniałych łyżek, umyłem dla odtłuszczenia i wrzuciłem do talerza. Natychmiast zaczęła zachodzić reakcja, glin utleniał się, przechodząc do roztworu:
Al Al3+ + 3 e
zaś oddawane przezeń elektrony redukowały siarczek srebra:
Ag2S + 3e + 2H2O 2Ag + H2S + 2OH
powstające srebro tworzyło warstewkę na nienaruszonym metalu. Równocześnie dawało się wyczuć słaby zapach siarkowodoru powstającego w reakcji. Metal jaśniał w oczach:
Wprawdzie łyżki nie są jakoś specjalnie cenne, ale ładnie wyglądają a bez ciemnej warstewki jeszcze lepiej.
Oczywiście trudno za jednym zamachem usunąć wszystko co zebrało się na srebrze zwłaszcza tam gdzie warstwa była gruba, ciemny nalot zwykle zawiera też tlenek srebra, który wymaga środowiska bardziej zasadowego, jednak już po paru minutach moczenia metal jest jaśniejszy, zaś pozostała cienka warstewka schodzi przy przecieraniu gąbką. Gdyby powtórzyć to parę razy zeszłoby wszystko, ale lekko zestarzałe srebro wygląda dobrze. Metoda ma tą zaletę, że w odróżnieniu od past polerniczych nie zarysowuje metalu.
Można skorzystać też z metod chemicznych, na przykład zanurzając a w przypadku większych przedmiotów przecierając watą nasączoną roztworem jodku potasu lub zasadowym roztworem tiomocznika, przez co osad ulegnie rozpuszczeniu.

Metody elektrochemiczne mogą mieć zastosowanie w przypadku innych metali, na przykład małe przedmioty z brązu, zaatakowane tzw "trądem brązu" można oczyścić z katalizujących korozję jonów chlorkowych zestawiając je w układ, w którym przedmiot połączony z ujemnym biegunem baterii zanurzony jest w destylowanej wodzie wraz z blaszką ołowianą połączoną z drugim biegunem. Jony chlorkowe migrują wówczas z przedmiotu i łączą się z ołowiem w nierozpuszczalny chlorek. W efekcie przedmiot, często zabytkowy, daje się uratować przed rozpadem.

W dokładnie ten sam sposób działały "cudowne płytki" reklamowane kiedyś w telewizji.
A wszystkie informacje brałem z jakże pomocnej książki Stefana Sękowskiego "Chemia dla kolekcjonera amatora"(wyd. Nasza Księgarnia, Warszawa 1989). Zapraszam też na stronę dra niehab. Tomasza Plucińskiego który też o tym pisał.

środa, 29 lutego 2012

Poison story (2.) - Cyjanek


Dziewięcioletnia Emilie Tanay, mieszkająca z rodzicami we francuskim mieście Gruchet-le-Valasse, niedaleko Normandii zachorowała w czerwcu 1994 roku na zapalenie nosogardzieli - czyli przeziębienie. Nie było to wielkim problemem, dlatego rodzice zezwalają jej pobyć przez weekend u zaprzyjaźnionej rodziny Tocqueville'ów, których synowie chodzą do tej samej klasy co ona. Zbliża się właśnie koniec roku szkolnego, zaś lokalnym zwyczajem jest organizowanie zabawy wzorowanej na średniowiecznych karnawałach.
Dzieci przebierały się za rycerzy, książęta i księżniczki, mając zajęcie na cały dzień. Emilie przebrała się za klauna. Wreszcie wieczorem pan Jean-Michel, zabiera całą trójkę do domu. Tam pani Tocqueville, Sylvia, podaje dziewczynce łyżeczkę zawiesiny z antybiotykiem Josacine. Dziewczynka odchodzi i po paru minutach upada na podłogę w kuchni. Nie mogąc jej docucić, wzywają pogotowie, które zastaje dziewczynę w śpiączce. Po przewiezieniu do szpitala pomimo kilku prób reanimacji o godzinie 22:30, ponad dwie godziny od powrotu do domu, Emilie Tanay umiera.

Początkowo lekarze sądzą, że przyczyną tak nagłego zgonu jest wrodzona wada serca lub tętniak w mózgu, jednak jeden z nich prosi również o dostarczenie butelki leku, która została w domu. Gdy trwają jeszcze badania, nad ranem pielęgniarka oglądając butelkę zauważa dziwny, wygląd zawartości, oraz niemiły zapach amoniaku. Ponieważ wyniki sekcji nie potwierdziły wstępnych założeń, skupiono się badaniach toksykologicznych. Po pierwszym sensacyjnym artykule prasowym, wedle którego lek "Josacine 500" zabił dziewczynkę, w całym kraju powstaje panika.
Josacine inaczej Jozamycyna, to antybiotyk makrolidowy o szerokim spektrum działania, skuteczny wobec bakterii Gram-dodatnich, jak gronkowce czy paciorkowce, niektórych Gram-ujemnych jak Legionella, bakterii beztlenowych i pierwotniaków. Stosowany wobec bakteryjnego zapalenia gardła, zatok, oskrzeli i płuc, oraz liszai i wysypek skórnych. Jest uważany za środek stosunkowo bezpieczny, stąd zaskoczenie, że preparat podziałał na dziewczynkę tak piorunująco. Dopiero po kilku dniach badania toksykologiczne sprawiają, że sprawa przybiera całkiem inny obrót: dziewięciolatka zmarła w wyniku zatrucia cyjankiem potasu. Pierwszą teorią było zbrodnicze zatrucie leku, przez jakiegoś szaleńca. Historia notowała takie przypadki.

Gdy na przedmieściach Chicago we wrześniu 1982 roku, chora na grypę dwunastoletnia Mary Kellerman zmarła kilka minut po zażyciu popularnego środka przeciwzapalnego w kapsułkach - Tylenolu - też sądzono z początku, że to wynik niewykrytej wady wrodzonej. Dlatego też nikt nie skojarzył jej śmierci z przypadkiem 27-letniego Adama Janusa, który zmarł w szpitalu tego samego dnia, z początkowym rozpoznaniem zawału serca. Dopiero gdy dwoje jego krewnych zmarło kilka minut po zażyciu kapsułek na ból głowy przebadano preparat stwierdzając, że zawierały śmiertelną dawkę cyjanku potasu - niespełna 100 mg. Nastąpiła wówczas bezprecedensowa akcja wycofywania z aptek i wykupowania od klientów 31 milionów opakowań leku, co kosztowało firmę 125 milionów dolarów. Niestety zanim informacja rozprzestrzeniła się w mediach nastąpiły trzy kolejne zgony. Jak wykazało śledztwo, morderca kupił kilka butelek Tylenolu, napełnił kapsułki cyjankiem potasu, po czym odstawił butelki na półki kilka sklepów samoobsługowych w Chicago i okolicach. Jego tożsamości nie udało się jednak ustalić.

Hipotezę powtórki tamtej historii szybko jednak odrzucono - opakowania leku były dobrze zabezpieczone i nie dało się ich otworzyć i zamknąć tak, aby nie pozostawić śladów. Nie udało się też znaleźć dobrego motywu zabicia dziewczynki przez kogoś z obu rodzin. Wysunięto więc hipotezę, że dziewczynka zmarła przypadkowo, zaś zatrucie opakowania antybiotyku nastąpiło wcześniej, przez osobę chcącą otruć kogoś z rodziny Tocqueville'ów. Dopiero przesłuchania pod tym kątem nasunęły śledczym nowy trop.

Przez pewien czas Sylvia, pracownica urzędu miasta, prowadziła romans z Jean-Marc
Deperroisem, zastępcą burmistrza, znanym biznesmenem. Dla niej romans szybko się kończy, on jednak nie tylko chce go kontynuować, ale pragnie ułożyć sobie z nią życie, wręcz żąda aby rozwiodła się z mężem i została z nim. Mąż Sylvi, Jean-Michel, często choruje, dzień wcześniej miał atak duszności. Podczas rozmów w biurze, Sylvia wspomina o tym przy nim, mówiąc że mąż musi znów zażywać leki. W dodatku prowadząc firmę produkującą i instalującą kamery termowizyjne, Deperrois kilka miesięcy wcześniej kupił znaczną ilość cyjanku potasu. Gdy wreszcie okazuje się, że nie ma alibi na kilka godzin krytycznego dnia, zaś sąsiedzi widzieli go, jak wychodził z domu byłej kochanki w rękawiczkach, posługując się kluczem który zniknął z jej torebki, Deperrois staje się głównym podejrzanym. Ale czy to on zabił? I dlaczego właściwie cyjanek potasu jest tak silną, wręcz piorunującą trucizną?

Cyjanki to związki zawierające nieorganiczny anion, będący połączeniem węgla i azotu.
Pomiędzy atomami występuje wiązanie potrójne -C ≡ N. Dimer tego jonu - dwucyjan, jest gazem o bardzo wysokiej temperaturze płomienia, sięgającej 4 tysięcy stopni. Związki organiczne zawierające tą grupę, to nitryle, jednak skupmy się na solach nieorganicznych.
Cyjanek potasu to krystaliczny, biały proszek, łatwo rozpuszczalny w wodzie z częściową hydrolizą. Stopniowy rozkład pod wpływem wilgoci sprawia, że ma wyraźny zapach gorzkich migdałów, jakim odznacza się wydzielający cyjanowodór, aczkolwiek pewien procent ludzkości go nie wyczuwa.
Odkryto go podczas badania składu niebieskiego pigmentu Błękitu Pruskiego, stąd zarówno nazwa popularna - kwas pruski - jak i naukowa od greckiego kyanos co znaczy "niebieski". Szerzej całą historię opisałem w jednej z wcześniejszych notek.

Wyjątkowo silne właściwości trujące cyjanków wiążą się ze zdolnością do tworzenia kompleksów z żelazem. Jony żelaza stanowią kofaktory wielu enzymów, a najważniejszym z nich jest oksydaza cytochromowa. Jest to enzym zawarty w mitochondrium odpowiedzialny za przebieg oddychania komórkowego. Jon żelaza III po przyjęciu liganda cyjankowego staje się nieaktywny, nie mogąc przekazywać elektronów pobranych z tlenu co hamuje dalsze reakcje metaboliczne. Zatruta komórka dusi się od środka, co gdy jest ich dużo prowadzi do śmierci organizmu. Z tego powodu można nazwać cyjanek "czadem w proszku". Dwie cząsteczki cyjanku blokują jedną cząsteczkę enzymu.
Ponieważ anion cyjankowy łatwo wnika do komórek, łatwo sobie wyobrazić, że niewielka ilość związku wystarcza, aby zablokować i udusić dużą ich ilość. Ostatecznie za narząd krytyczny uważa się serce - zgon następuje najprawdopodobniej w wyniku uszkodzenia i zatrzymania mięśnia sercowego, choć podaje się też że przyczyną jest porażenie ośrodka oddechowego.
Organizm w pewnym stopniu może się jednak bronić - mitochondria zawierają również specyficzny enzym siarkotransferazy tiosiarczanowej (lub też sulfotransferazy a dawniej też nazywano go rodanazą), który reaguje z cyjankami przekształcając je w mniej toksyczne związki. Odbywa się to w dwóch etapach: najpierw zawierająca siarkę cysteina, w łańcuchu białkowym enzymu, reaguje z jonami tiosiarczanowymi, zawartymi w ustroju, tworząc formę z jonem disiarczkowym. Ta z kolei łączy się z cyjankiem, zamieniając go w tiocyjanian:

Jon tiocyjanianowy, S=C=N-, nazywany dawniej rodankowym, jest kilkaset razy mniej toksyczny od cyjankowego. Dla cyjanków wartość LD 50, czyli dawki zabijającej połowę populacji, wynosi 1mg/kg masy ciała, zatem dla dorosłych jest to około 60-70 mg, zaś dawką "pewną" jest 100-150 mg, co powinno zabić każdego. To mniej niż łyżeczka.
Natomiast dla tiocyjanianów podaje się wartość LD 50 wynoszącą 865 mg/kg masy ciała, więc dawka dla dorosłego to kilkanaście gramów. Zamiana jednego związku w drugi wywołuje zatem dramatyczny spadek toksyczności. Jak jednak łatwo zauważyć, aby ten sposób odtruwania mógł działać, w organizmie musi być obecna odpowiednio duża ilość siarki, zarówno nieorganicznej jak i w cysteinie, w przeciwnym razie nie zachodzi pierwszy etap reakcji. Dlatego zatrucie następuje wówczas, gdy ta naturalna ochrona zostaje przełamana. Największą aktywność enzymu, a więc jego zawartość, stwierdzono w wątrobie i to tam, po wchłonięciu z jelita, następuje usuwanie toksyny. U szczurów i królików aktywność enzymu jest kilkukrotnie wyższa niż u człowieka, zaś u psów niższa.

Przebieg zatrucia jest zazwyczaj następujący: po połknięciu cyjanek rozkłada się w kwaśnym środowisku żołądka, z wydzieleniem cyjanowodoru. Pokazywany na filmach objaw piany występującej na usta, to zapewne wynik podrażnienia żołądka i przełyku, choć nie pojawia się w każdym przypadku. Jony cyjankowe, które nie zostały zsiarkowane po wchłonięciu z jelit trafiają do krwi, wraz z którą są rozprowadzane po organizmie. Dla podtrucia małymi dawkami pojawiają się takie objawy, jak przyspieszony oddech, bóle głowy, podwyższone ciśnienie, szybkie bicie serca, wymioty, osłabienie. Dla dawek wyższych serce zwalnia, ciśnienie gwałtownie spada, pojawiają się drgawki i utrata przytomności, uszkodzone zostają płuca. Wdychanie cyjanowodoru w dawkach pod-krytycznych może spowodować śmierć po kilku dniach z powodu obrzęku płuc. Po zażyciu śmiertelnej dawki objawy są jeszcze bardziej nasilone, zaś śmierć następuje w ciągu kilku-kilkunastu minut.[1] Przy narażeniu na duże stężenia cyjanowodoru następuje natychmiastowe porażenie oddechu i szybka śmierć w wyniku uduszenia. U osób wystawionych na przewlekły kontakt z małymi dawkami, z czasem rozwijają się uszkodzenia serca i mózgu, zaś objawy utraty lub osłabienia pamięci, i przewlekłego zmęczenia, mogą dawać o sobie znać jeszcze w kilka lat po zatruciu.
Po zgonie obserwuje się czerwone lub karminowe zabarwienie skóry i tej samej barwy plamy opadowe. Jest to związane z brakiem odtleniania krwi tętniczej przez zatrute tkanki. Natleniona krew o barwie czerwonej wypełnia żyły, zastępując niebieskawą krew odtlenioną, co wpływa na kolor skóry. Podczas sekcji zwłok daje się wyzuwać zapach gorzkich migdałów, natomiast w oddechu wyczuwalny jest amoniak, będący jednym z produktów rozkładu cyjanków.

Z powody tych właściwości, cyjanek potasu był chętnie stosowaną trutką na szczury, owady i ludzi. Obraz piorunującej trucizny, zabijającej w ciągu kilkunastu sekund - a więc zdecydowanie za szybko - utrwaliły powieści kryminalne, gdzie był to wygodny literacko sposób na szybkie i bezkrwawe usunięcie postaci. Nawet Agatha Christie, mimo pielęgniarskiego wykształcenia, opisywała tą truciznę w ten sposób. Tylko raz opisała pełny przebieg gwałtownego zatrucia, z wszystkimi okropnymi objawami, ale tam (w "Tajemniczej Historii w Syles") chodziło o strychninę. Była to zresztą jej pierwsza powieść. W kolejnych upraszczała sprawę na ile się dało, aby uniknąć drastycznych szczegółów, stąd w Dziesięciorgu Murzynków (przerobionej potem na "I nie było już nikogo" z powodu obaw o oskarżenie o rasizm), śmierć od cyjanku zostaje przedstawiona jak zakrztuszenie (aczkolwiek trzeba jej przyznać, że cyjanek w inhalatorze astmatyka, opisany w jednej z powieści, to genialny pomysł).
Z innych przykładów należy wymienić opowiadanie Raymonda Chandlera "Gaz skazańców" (w oryginale "Nevada Gas" z powodu wykorzystania w tamtym stanie do kary śmierci), gdzie cyjanowodór wpuszczony na tył uszczelnionej limuzyny służy do usuwania niewygodnych osób.

Zanotowano też liczne przypadki samobójstw i morderstw dokonanych przy jego użyciu. Znane są historię o tabletkach lub kapsułkach z cyjankiem, noszonych przez ludzi podziemia w czasie wojny, aby popełniając samobójstwo po aresztowaniu zminimalizować ryzyko, że jakaś szczególnie wyrafinowana tortura wydusi z nich nazwiska innych. Spotkałem się nawet kiedyś z historią AK-owca, który truł się tak i był odratowywany dwa razy. W identyczny sposób po przegranej Niemiec truli się najwyżsi hitlerowscy dygnitarze.
Do najbardziej jednak znanych zbrodniczych zastosowań, należy masowe zagazowywanie cyjanowodorem więźniów obozów koncentracyjnych podczas II wojny światowej. Stosowany tam środek, Cyklon-B pierwotnie służył do odwszawiania, jednak łatwość z jaką można było przy jego pomocy usunąć dużą grupę ludzi sprawiła, że został wykorzystany do przeprowadzenia "ostatecznego rozwiązania kwestii żydowskiej". Preparat miał postać zapuszkowanych granulek ziemi okrzemkowej, lub kredy a w niektórych wersjach nawet krążków drewna, nasączonych ciekłym cyjanowodorem, uwalnianym przy lekkim ogrzaniu. Szacuje się że cyjanowodór w takiej postaci posłużył do zabicia miliona ludzi.


W związku z wycofywaniem nieorganicznych cyjanków z wielu procesów technologicznych, niewiele pozostaje źródeł zatrucia. Notowano zatrucia związane z fałszowaniem rozpuszczalników do użytku domowego i zmywaczy do paznokci acetonitrylem, który jest metabolizowany do cyjanków. Pewne związki rozkładające się do cyjanków, były używane jako insektycydy, jednak stosuje się je coraz rzadziej. W przemyśle cyjanki służą między innymi do wyodrębniania złota ze złóż. Złoto reaguje z nimi tworząc rozpuszczalny kompleks:
4 Au + 8 NaCN + O 2 + 2 H 2 O 4 Na [Au (CN) 2] + 4 NaOH
Proces jest jednak niebezpieczny dla pracowników i groźny dla środowiska. Po katastrofie rumuńskiej kopalni złota w Maia Baro w 2000 roku, gdzie wyciek wody zawierającej do 100 ton cyjanków zabił ryby w Cisie i Dunaju, organizacje ekologiczne starają się aby wycofano ten proces.

Mimo wszystko najczęściej spotykanym źródłem cyjanków, są rośliny zawierające glikozydy cyjanogenne. Glikozydy są wytwarzane jako element obrony przed roślinożercami, niektóre rośliny zielne gromadzą je w liściach, natomiast wiele roślin których owoce zawierają twardą pestkę, gromadzą glikozydy w pestkach. Roślinożerca, który zjada taki owoc powinien szybko nauczyć się, że pestek się nie rozgryza, wobec czego wędrują w jego przewodzie pokarmowym i nienaruszone wydostają się w całkiem innym miejscu, rozsiewając roślinę. Najbardziej znanym przykładem jest Amigdalina, zawarta w pestkach roślin z rodzaju śliwa (Prunus) wraz z Prunazyną, a w pewnym stopniu również w pestkach innych Różowatych (Rosaceae). W niektórych występuje w znacznych ilościach, podaje się że 1 g pestek wiśni zawiera 1,7 mg amigdaliny, w gorzkich migdałach do 4,5 mg glikozydu, co przekłada się po rozkładzie w organizmie na 1 mg cyjanku na migdał. Łatwo zatem policzyć, że teoretycznie dawka śmiertelna dla dorosłego człowieka, to 50-60 migdałów, co jednak wobec wybitnie gorzkiego smaku jest trudne do osiągnięcia - ale nie niemożliwe, notowano już takie przypadki. W przypadku dziecka dawką śmiertelną może być nawet 10 migdałów.
Jeszcze zasobniejsze w ten związek są pestki brzoskwini i moreli, w mniejszym stopniu pestki wiśni i czereśni. Również więdnące liście czereśni i laurowiśni gromadzą glikozyd, co bywa powodem zatruć zwierząt. W ostatnim czasie coraz bardziej popularne jest zażywanie tych pestek, bądź wyizolowanego glikozydu w postaci tabletek i zastrzyków jako alternatywnego leku na raka. Nie będę się tu na razie wdawał w dyskusję na ile jest to sposób skuteczny - choć temat chodzi mi po głowie wśród notek zaplanowanych - w każdym bądź razie nie trudno znaleźć liczne przykłady osób, które śmiertelnie nadużyły tego środka.
Innym znanym przykładem, są glikozydy manioku będącego podstawą żywieniową w krajach ameryki południowej i Indonezji. Maniok na surowo jest trujący, niektóre dzikie odmiany w ogóle nie nadają się do spożycia, zaś korzenie manioku uprawnego są przez użyciem gotowane, prażone, moczone w wodzie lub fermentowane, co powoduje rozkład glikozydów. Maniok źle przetworzony wywołuje objawy takie jak wymioty, bóle głowy, zaburzenia oddechowe a w większych dawkach śmierć. Ponadto długotrwałe podtruwanie małymi dawkami glikozydów cyjanogennych prowadzi przy ubogiej diecie do choroby Konzo, będącej wynikiem uszkodzenia mózgu i objawiającej się trwałym paraliżem.
Mniejsze ilości podobnych związków, innych jak amigdalina, znajdują się w nasionach lnu, dzikiego bzu, czeremchy i liściach koniczyny białej.

W leczeniu zatruć wykorzystuje się najczęściej mechanizmy podobne do naturalnej detoksykacji - tiosiarczan sodu w formie zastrzyku, przeprowadza cyjanki w rodanki. Inne metody wykorzystują fakt, że jony cyjankowe chętniej łączą się z utlenioną formą hemoglobiny - methemoglobiną - stąd wykorzystanie takich środków utleniających i methemoglobinotwórczych, jak azotan amylu, azotan III sodu czy dimetyloaminofenol (4-DMAP). Dodatkowo można stosować kompleks wersenianiu kobaltu, z którym w formie dodatkowego ligandu może się łączyć cyjanek i w takiej formie być wydalonym. Na podobnej zasadzie opiera się działanie jednej z odmian witaminy B12 - hydroksykobalaminy, która wiąże cyjanek w nieszkodliwą cyjanokobalaminę.

A co z Deperroisem?
Nasz biznesmen po zaaresztowaniu wypierał się wszystkiego, nawet dobrze poświadczonego w rachunkach zakupu cyjanku potasu. Dodatkowo cyjanek znaleziony w butelce zawierał ślady charakterystycznych zanieczyszczeń, takich samych jak w partii cyjanku jaki zakupił. To wraz z zeznaniami świadków którzy widzieli go wychodzącego krytycznego dnia z domu byłej kochanki było wystarczającym dowodem, aby 26 maja 1997 roku sąd skazał go na dwadzieścia lat pozbawienia wolności.
Dopiero w 2006 roku, po odsiedzeniu12 lat (z aresztem włącznie), został warunkowo zwolniony, jednak mimo licznych wysuwanych wątpliwości i alternatywnych hipotez, żadne próby odwołania wyroku bądź rewizji procesu, nie odniosły skutku.

Natomiast tożsamość "tylenolowego zabójcy" nie została dotychczas poznana. Wprawdzie jeszcze w 1986 roku odnaleziono butelkę zatrutego cyjankiem leku, którym zatruła się jedna osoba, ale nie udało się powiązać tego przypadku z innymi. Nie tak dawno sprawdzano nawet czy ślady biologiczne na kapsułkach zgadzają się z materiałem pobranym o Teda Kaczynskiego - znanego jako Unabomber - który przez 18 lat wysyłał wybuchające listy, nie dając się złapać FBI. Jak na razie nie słyszałem, aby badania coś wniosły do sprawy, więc ten przypadek należy uznać za nierozwiązany.
---------
Źródła:

* Witold Seńczuk, "Toksykologia Współczesna", Wydawnictwo Lekarskie PZWL 2005

* http://fr.wikipedia.org/wiki/Affaire_de_la_Josacine_empoisonn%C3%A9e
* http://www.affaires-criminelles.com/dossier_10-1.php
* http://en.wikipedia.org/wiki/Cyanide
* http://en.wikipedia.org/wiki/Cyanide_poisoning
* http://en.wikipedia.org/wiki/Rhodanese
* http://en.wikipedia.org/wiki/Cassava

[1] http://www.bt.cdc.gov/agent/cyanide/basics/espanol/facts.asp

wtorek, 21 lutego 2012

Wczoraj w laboratorium (7.)

Na pierwszych zajęciach z biochemii przeprowadzaliśmy próby charakterystyczne na aminokwasy. Tu reakcja Adamkiewicza-Hopkinsa:



Próba wykrywa obecność tryptofanu, aminokwasu stanowiącego składową wielu białek, a dokładnie grupy indolowej. Gdy do mieszaniny tryptofanu z kwasem octowym wleje się ostrożnie stężonego kwasu siarkowego tak, aby utworzył warstwę na dnie, na granicy faz w silnie zakwaszonym środowisku aminokwas reaguje z grupą karbonylową tworząc barwny produkt kondensacji, koncentrujący się w warstwie granic faz i opisywany jako "wiśniowy pierścień". Wszystkie reakcje dla białek i aminokwasów omówię lepiej w osobnym wpisie, bo mi się trochę ich zdjęć nagromadziło.