informacje



Pokazywanie postów oznaczonych etykietą krystalografia. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą krystalografia. Pokaż wszystkie posty

poniedziałek, 25 października 2021

Kiedyś w laboratorium (84.)


 Krystalizacja aminokwasów metodą wiszącej kropli.


Aby przy pomocy krystalografii zbadać substancję, należy ją dobrze wykrystalizować. Ale to bywa czasem trudne - rozbudowane, asymetryczne cząsteczki trudno odnajdują jakiś porządek w trójwymiarowej sieci. Mogą wytrącać się jako osady amorficzne, niekiedy mają skłonność do tworzenia oleistych cieczy przechłodzonych. Czasem substancja może tworzyć warstewkę na powierzchni naczynia z powodu adhezji, lub koncentrować się wokół nierówności. Dlatego wymyślono wiele metod krystalizacji, które czasem pozwalają na otrzymanie nowej formy krystalicznej, jaka w innych warunkach nie powstaje.

W metodzie wiszącej kropli wykorzystywane są niewielkie objętości roztworu substancji, co jest korzystne, gdy mamy jej akurat bardzo niewiele. Wykorzystywane jest to w zasadzie proste zjawisko zatężenia roztworu przez odparowanie, ale szybkość procesu jest kontrolowana. 

Przygotujemy roztwór badanej substancji, na przykład białka, w rozpuszczalniku. Dla biomolekuł jest to zwykle któryś z buforów. Przy pomocy pipety umieszczamy kroplę na spodniej stronie nakrywki, tak aby z niej zwisała ale nie mogła skapnąć. Nakrywamy tym ostrożnie naczynka zawierające taki sam roztwór ale o wyższym stężeniu substancji rozpuszczonych. Czyli na przykład na nakrywce jest roztwór białka w 0,1M buforze, a w naczynku bufor o stężeniu 0,5M. Po zamknięciu naczynka roztwory będą dążyły do pewnej równowagi - parowanie z mniej stężonego roztworu będzie bardziej intensywne, zaś ten bardziej stężony będzie w efekcie pochłaniał rozpuszczalnik i się rozcieńczał. W efekcie stężenie substancji w kropi będzie rosło, aż do przesycenia.

Ze względu na to, że powstające kryształy nie będą opadały na podłoże, co wynika z odwróconej pozycji, kryształ zawiesi się blisko spodniej powierzchni kropli. Ogranicza to zaburzenia wywołane oddziaływaniem kryształu z podłożem, jak na przykład spłaszczenie z powodu odcięcia jednej strony, która przylgnęła do dna. Odpowiednio dobierając różnice stężeń między roztworem w kropli i roztworem na dnie, można proces zatężenia przyspieszyć lub spowolnić, mogąc ustawić go tak, aby powstawał pojedynczy kryształ dostatecznej wielkości.

poniedziałek, 6 marca 2017

Ostatnio w laboratorium (55.)

Ostatnio w ramach specjalizacji z krystalografii próbowałem wykrystalizować i wstępnie zbadać kokryształ glicyna+kwas glutarowy. Akurat z samą krystalizacją nie było zbyt dużego problemu:
Kokryształy to kryształy tworzone przez równocześnie dwie lub więcej substancji tworzących powtarzalny układ w sieci. Zwykle precyzuje się, że różne cząsteczki oddziałują niejonowo, co odróżnia je od soli, oraz że obie substancje tworzą czyste kryształy w warunkach istnienia kokryształu, co odróżnia je od hydratów i części klatratów.
 Dla danego typu połączenia substancje składowe zachowują stały stosunek stechiometryczny, na przykład dla kryształu chinhydronu na jedną cząsteczkę hydrochinonu przypada jedna cząsteczka chinonu, z którym tworzy kompleks.

Zachodzenie kokrystalizacji może wynikać bądź z tworzenia nowej struktury, bądź z możliwości wpasowania się jednej, podobnej rozmiarami cząsteczki, w normalną sieć krystaliczną drugiego związku. Obecnie temat jest intensywnie badany na potrzeby farmaceutyki, bowiem kokryształy leków mogą być bardziej trwałe, trudniej topliwe lub wykazywać odmienną rozpuszczalność niż substancja czynna w formie czystej.[1]

W tym przypadku sposób otrzymania był prosty, lecz nie do końca pewny - rozpuściliśmy po prostu w wodzie glicynę i kwas glutarowy w stosunku molowym 1:1, nieco ogrzaliśmy dla odparowania aby otrzymać roztwór przesycony i wylaliśmy niewielką ilość na szklaną szalkę. Składniki wykrystalizowały w formie igiełkowatych kryształków i pozostawało tylko dobrać do badania odpowiedni, oraz trafić na kokryształ, bo kształtem nie wyróżniał się od kryształów glicyny i kwasu glutarowego które także mogły powstać.
Układ pomiarowy w dyfraktometrze: na końcu szklanej kapilary mały jasny punkcik to kryształ, z lewej strzela wiązka promieniowania, powyżej kamera pozwalająca wypośrodkować kryształ i oświetlenie. Po prawej obudowa detektora.

Pierwszy zbadany kryształek prawdopodobnie należał do poszukiwanego połączenia ale nie dawał sygnału odpowiedniej jakości aby to potwierdzić - był trochę za duży i oprószony drobniejszymi na powierzchni. Ze względu na rozmiar wiązki promieni rentgenowskich, kryształ powinien być mniejszy niż milimetr, oraz powinien być monokryształem bez spękań i przyrośniętych bliźniaków.

Należało więc poszukać następnego. Odpowiednio wyglądającą igłę przyciąłem manipulując pod mikroskopem pęsetą i skalpelem, aby nie była zbyt duża, i przykleiłem na kropelkę do kapilary na końcu główki goniometru. Tym razem szybkie sprawdzenie pokazało sygnał dość dobrej jakości, ale inny niż oczekiwany. Wyselekcjonowany kryształek okazał się glicyną w odmianie alfa.
Zostało mało czasu, więc wybrałem z szalki mały kryształek, którego nie trzeba było ciąć. Niestety podczas próby nałożenia złamała się szklana kapilara do której przyklejane były kryształy. Ostatecznie postanowiliśmy zaryzykować i kryształek został przyklejony do zachowanego kikuta, trochę grubego, ale jeszcze dostatecznego. Kryształ przykleił się krzywo a w dodatku obok przyczepił się czyjś włos. Nie wyglądało to dobrze:
Jednak wstępny pomiar pokazał, że kryształ jest bardzo dobrej jakości, bez zakłóceń, i ma inną grupę przestrzenną. Dzięki temu mogliśmy sprawdzić parametry komórki krystalicznej w bazie i stwierdzić że jest to... glicyna w formie beta.
Odmiana beta jest metastabilna w normalnych warunkach i zwykle szybko zamienia się w formę alfa. Na zajęciach ze studentami kilka miesięcy wcześniej żadnej grupie nie udało się jej uzyskać, a teraz jak na złość. Ponieważ kończył się czas, dalszą krystalizację odłożyliśmy do następnych zajęć.
----------
[1] http://biuletynfarmacji.wum.edu.pl/1305Sokal/Sokal.html