informacje



Pokazywanie postów oznaczonych etykietą sztuka. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą sztuka. Pokaż wszystkie posty

poniedziałek, 1 grudnia 2025

"Struktura DNA" - Co takiego namalował Dali?

   


  Na ten ciekawy przypadek natrafiłem przeglądając artykuły o twórczości Salvadora Dalego, jednego z moich ulubionych malarzy. Najszerzej znane jego dzieła, jak "Płonąca żyrafa" czy "Trwałość pamięci" pochodzą z początkowych lat kariery. Miał tę karierę jednak bardzo długą i w ostatnich dwóch dekadach zaczął tworzyć kolażowe zestawienia obiektów z różnych obiektów, czerpiąc inspirację z komercyjnych produktów, zdjęć, filmów. A także z wynalazków i osiągnięć nauki. Dali interesował się odkryciami naukowymi, korespondował z naukowcami i prenumerował czasopisma. Tematy związane z odkryciami i wynalazkami pojawiały się w obrazach z lat 70 i później, aż do końca jego życia, w tym też tematyka związana z odkryciami biologii i chemii [1]. Wśród tematów jakie szczególnie często go zastanawiały była fizyka jądrowa, nowoczesna matematyka i odkrycia biologii. Żywo zareagował na doniesienia o odkryciu struktury DNA, której regularna, helikalna symetria wyglądała fascynująco, mistycznie. Już w 1957 umieścił schemat podwójnej helisy na obrazie "Krajobraz motyli". Malarz miał zresztą okazję poznać Watsona, jednego z badaczy proponujących model DNA, więc temat nie był mu obcy. [2]


  Artykuły omawiające naukowe inspiracje artysty często jednym tchem wymieniają ten obraz wraz z późnym dziełem "Structure of DNA", będącym parą obrazów stereoskopowych, które według wielu opisów mają przedstawiać zgodnie z tytułem strukturę DNA. Poszukałem tych obrazów i dobrze się im przyjrzałem. Cóż, można wybaczyć krytykom sztuki, że wzięli tytuł za dobrą monetę, ale mnie jako chemikowi trudno nie zauważyć, że struktura na obrazach w niczym nie przypomina DNA.



  Para obrazów z 1975 roku zatytułowana "Structure of DNA" była stworzona z myślą o oglądaniu stereoskopowym. Należy spojrzeć na oba na raz tak, że jedno oko patrzy na jeden a drugie na drugi i oba nakładają się na siebie w przestrzeni. Można to osiągnąć patrząc przez odpowiednie okulary zakrzywiające obraz, oglądając zdjęcia w stereoskopie lub fotoplastikonie, ale zdecydowanie najczęściej ogląda się takie obrazy robiąc lekkiego zeza, tak aby półprzezroczysty obraz z jednej strony nałożył się na drugi, tworząc sumę, która jest odbierana jak obiekt 3D. 

  Tak więc przy odpowiednim spojrzeniu zaczniemy dostrzegać namalowane obiekty przestrzennie i zobaczymy, że najbliżej znajduje się czarna cząsteczka na dole, która jest skierowana ku nam trójdzielną grupą. W kolejnej warstwie są dwie, równoległe fioletowe (po lewej) lub żółte (po prawej), a nad nimi jedna biała/żółta. Jeden z atomów czarnej cząsteczki zostaje częściowo przesłonięty atomem jednej z fioletowej/żółtej, z kolei jeden z atomów górnej cząsteczki częściowo przesłania pierścień cząsteczki pod nim. Wszystko to tworzy ciekawą kompozycję przestrzenną. Tylko, że to nie ma za bardzo związku z DNA.

  Przekonanie, że te obrazy przedstawiają DNA zgodnie z ich tytułem jest chyba dość powszechne - pojawia się w krótkim liście zamieszczonym w publicystycznej części czasopisma The Nature z 2003 roku. [3] Jan Domaradzki w artykule z 2015 roku omawia przykłady biologicznych inspiracji Dalego i wymienia tam te obrazy, opisując je jako przedstawiające różnokolorową podwójną helisę.[4] No ciekawe gdzie on tam widzi helisy?  

  Na co właściwie patrzymy na obrazach? Są to modele cząsteczek związku chemicznego, a konkretnie są to cztery oddzielne cząsteczki, nie tworzące żadnej helisy, przedstawione na tle szkieletu sześcianu. Atomy mają zdeformowany kształt mniej lub bardziej wydłużonego jajka. Oznacza to, że jest to model wykorzystujący elipsoidy termiczne. 
Cząsteczka kompleksu samaru z pracy:
Inorganic Chemistry 2003 42 (21), 6682-6690


  Atomy w strukturze cząsteczki w krysztale ulegają drganiom termicznym, wpływa to na rozmycie przestrzenne sygnałów rejestrowanych metodami krystalografii. Można z tego rozmycia wydobyć informacje o tym jak bardzo atom drga w trzech prostopadłych kierunkach przestrzeni. Graficznym przedstawieniem tego zakresu drgań jest obła bryła będąca elipsoidą obrotową, a więc bryłą której przekrój jest eliptyczny wzdłuż, w poprzek i na płask. Kształt ten jest w różnych stylach rysowania podkreślany prostopadłymi liniami, lub wcięciem. Im mocniej drga atom w strukturze cząsteczki, tym bardziej wydłużona jest jego elipsoida. Atom wykonujący wiele złożonych drgań w trzech kierunkach przestrzeni jest w takim ujęciu większy od atomu bardziej statycznego. 

  Przedstawione cząsteczki nie przypominają żadnej ze składowych cząsteczki DNA, nie mogą stanowić jakiegoś bliskiego fragmentu tej struktury i jestem bardzo zdziwiony, że przez tyle lat nikt nie zwrócił na to uwagi.  Czym mogą być te cząsteczki? Nie są narysowane całkiem poprawnie, co wyjaśnię później, ale ogólne pierwsze wrażenie jest takie, że to mogło być wzorowane na rysunkach struktury krystalicznej para-ksylenu. 

  Pierścień w cząsteczkach ma sześciokątny kształt i jest płaski, co pasuje do aromatycznego pierścienia w p-ksylenie, jeśli w rysunku pominięto wodory przy pierścieniu. Pochodne cykloheksanu byłyby bardziej wygięte. Natomiast wygląd dwóch grup odstających od pierścienia pasuje do grup metylowych z pokazanymi pozycjami trzech wodorów. Dużo większe i wydłużone poprzecznie do dłuższej osi cząsteczki elipsoidy termiczne protonów to częsta cecha tych właśnie grup. To, że Dali mógł się wzorować na rysunkach tej właśnie  struktury nie jest niemożliwe, bo w jego czasach już taką ją opisano. Tylko może być ciężko to dowieść. 
  Pierwsza publikacja na temat struktury krystalicznej p-ksylenu pochodzi jeszcze z 1960 roku (Indian J. Phys.(1960), 34, 263-271 ), ale w 1986 ukazała się nowa analiza, wykazująca między innymi, że dane podane w tamtej starej publikacji są niepoprawne. Biorąc jednak pod uwagę czas wykonania obrazów, musiały opierać się na rysunkach struktury z tej starszej publikacji. [5] 
W nowszych publikacjach można znaleźć rysunki takiej struktury i sposób w jaki cząsteczki układają się w przestrzeni (na jodełkę) rzeczywiście bardzo przypomina strukturę Dalego. Jest to typowy układ dla prostych pochodnych benzenu wynikający z efektów magnetycznych pierścienia aromatycznego.
Crystal Growth & Design 2022, 22, 6, 3862-3869



  Z tym rozwiązaniem jest jednak ten problem, że Dali najwyraźniej przenosił rysunki struktury na obraz niedokładnie i ostateczny wynik zawiera dużo błędów. Najważniejsza kwestia jest taka, że pomimo sześciokątnego  kształtu pierścieni, te na obrazach składają się z ośmiu a nie sześciu atomów. Jednak pierścienie cząsteczek organicznych złożone z ośmiu atomów nie mogą być płaskie - cyklooktan układa się w przestrzeni w kształt łódeczki, jego annulen cyklooktatetraen jest antyaromatyczny i także wygina się przestrzennie. 
   Można by to zwalić na licencję artystyczną, ale mi to wygląda na błąd przerysowania lub na celowe zepsucie cząsteczki dla gęstszego układu. Niektóre inne zmiany mają uzasadnienie i są zamierzone - brak atomów wodoru przy pierścieniach zmniejsza nakładanie cząsteczek i poprawia rozróżnianie atomów. Dolna grupa metylowa górnej cząsteczki ma zaznaczony tylko jeden wodór, ten bliżej nas (biały owal na niebieskiej wersji), pozostałe zasłaniałyby cząsteczkę z tyłu. Jednak wycinanie nadmiarowych atomów nie do końca się powiodło, i tak na niebieskiej wersji grupa metylowa fioletowej cząsteczki po lewej ma towarzyszące jej cztery atomy zamiast trzech. Nadmiarowa elipsoida jest bliżej nas niż cząsteczka. Widać to dobrze porównując cząsteczkę lewą z prawą lub sprawdzając wygląd na wersji brązowej, gdzie tego dodatkowego atomu nie ma. Skąd się tam wziął? Z grupy metylowej górnej cząsteczki. 

  Na prawej, brązowej wersji obrazu widać dobrze, że grupa ta ma tam zaznaczony tylko jeden wodór, bliżej obserwatora. Na niebieskiej wersji zapewne też tak miało być, ale podczas uzupełniania wstępnego szkicu położenia cząsteczek doszło do błędu, i elipsoida atomu wodoru, który w drugiej wersji pominięto aby nie zasłaniał, w tej wersji została przypisana lewej cząsteczce i pokolorowana na fioletowo. Widać tą tożsamość gdy nałoży się na to miejsce będącą w tym samym położeniu grupę metylową czarnej cząsteczki poniżej.


Czemu więc po skrupulatnym oddaniu na płótnie struktury krystalicznej jakiegoś prostego związku organicznego, Dali zatytułował obrazy "Struktura DNA"? Możliwe, że takie było jego początkowe założenie, że namaluje naukową strukturę tego związku, ale okazała się zbyt skomplikowana więc wziął coś innego. A może uznał, że taki tytuł będzie brzmiał lepiej niż "Struktura kryształu niepoprawnie narysowanego para-ksylenu"?

Można gdybać. 
-------

[1] https://www.elespanol.com/ciencia/20180331/dali-genio-pintura-dejo-boquiabierto-severo-ochoa/295221428_0.html
[2] https://xn--archivoespaoldearte-53b.revistas.csic.es/index.php/aea/article/view/968/1001 
[3] https://www.researchgate.net/publication/10690668_Dali_and_the_double_helix
[4] https://www.researchgate.net/publication/290142479_DNA_jako_kod_kulturowy
[5] https://journals.iucr.org/paper?S0108768186097847

niedziela, 27 maja 2012

Czerwień nie tak czerwona


Wszystko zaczęło się pewnego dnia w roku 79 naszej ery, albo też 832 a.U.c. kiedy to od dawna niespokojny wulkan Wezuwiusz wybuchł z wielką siłą. Z wierzchołka góry wydobyły się fontanny iskier i pióropusz dymu który zaćmił niebo. Gdy na ulice położonych u jego podnóża miast Stabie, Herkulanum i Pompeje opadać zaczął drobny, podobny do płatków puszystego śniegu popiół wulkaniczny, przemieszany z kamykami lapilli, większość mieszkańców ukryła się w domach, czekając aż przejdzie. Okazało się to zgubnym rozwiązaniem, gdyż opad nie ustawał, zasypując ulice i załamując dachy. Ci którzy zbyt późno się zorientowali, nie mogli się wydostać z zasypywanego miasta. Zagrzebani szarym popiołem ginęli w domach, na ulicach, w pałacach i willach, na placach i w parkach, dusząc się od gorących gazów. W Herkulanum popiół pokrył wszystko niezbyt grubą warstewką, toteż mieszkańcy mieli czas na ewakuację, ale pod wieczór ze zboczy obsunęła się lawina gorących materiałów piroklastycznych, które w kilka chwil zagrzebały miasto. W porcie znaleziono później kilkaset szkieletów tych którzy nie zdążyli uciec.
Erupcja skończyła się po kilku dniach, zagrzebując miasta kilkumetrową warstwą popiołów, dzięki czemu trzeba było czekać aż do XVII wieku zanim przypadkowo odkryto że głęboko pod ziemią zalegają starożytne figury, domy, dzielnice...

Odkrycie Pompei należało do największych odkryć archeologicznych w dziejach. W dużym stopniu przyczyniło się do rozwoju nurtu klasycznego w architekturze, przede wszystkim jednak pozwoliło zobaczyć nam jak wyglądało starożytne miasto, zakonserwowane niczym pod szklanym kloszem. Odsłonięto domy, dobrze zachowane przedmioty codziennego użytku. barwne mozaiki i feski na ścianach. Tu i ówdzie grafitti wykonywane z potrzeby chwili. I ciała.
Popiół wulkaniczny okrywający miasto szybko stwardniał w tuf, zaś te obiekty które łatwo ulegały rozkładowi, zachowały się w formie odcisków. Gdy zaczęto natykać się na pierwsze szkielety, każdy tkwił w niszy zachowującej kształt ciała; zajmujący się wykopaliskami Giuseppe Fiorelli zaczął w takich wypadkach wypełniać "odcisk" gipsem. Po oczyszczeniu i wyjęciu otrzymywało się przerażająco dokładny odlew człowieka, z zachowaniem takich szczegółów jak rysy twarzy czy kształt ubioru. Jak dotychczas odkryto w Pompejach dwa tysiące takich ciał.

Jedną z rzeczy jakie rzucały się w oczy historykom sztuki były żywe barwy zachowane zarówno wewnątrz jak i na zewnątrz budynków. Prawdopodobnie utrwalony w powszechnym mniemaniu obraz białych miast starożytności jest błędny - już w opisach ówczesnych autorów znajdujemy wzmianki o barwach świątyń, co potwierdzają najnowsze badania. Na niektórych zabytkach które długo przeleżały w ziemi zachowały się jeszcze ślady farb.
W starożytnych opisach zachowały się wzmianki o używanych pigmentach - czerwony cynober, błękitny azuryt, zielony malachit, purpura tyryjska czy "smocza krew" będąca zapewne żywicą draceny. Częste były też ochry pozwalające uzyskać różnorodne odcienie żółci, czerwieni i brązu[1].

Dosyć ciekawym pigmentem był tak zwany błękit egipski. Był to prawdopodobnie pierwszy pigment syntetyczny. Chemicznie rzecz biorąc to podwójny krzemian wapnia i miedzi, mający postać szklistych ziaren, nierozpuszczalnych w wodzie, o ładnym, jasnoniebieskim kolorze. Witruwiusz opisał, że dla wytworzenia błękitu ogrzewano w piecu mieszaninę związków miedzi, zapewne malachitu, piasku kwarcowego, wapienia i natronu.:
Cu 2 CO 3 (OH) 2 + 8 SiO 2 + 2 CaCO 3 → 2 CaCuSi 4 O 10 + 3 CO 2 + H 2 O
Węglan sodu był w tym procesie topnikiem, w reakcji krzemionki, miedzi i wapna powstawał krzemian wapniowo-miedziowy w postaci małych ziarenek, które należało następnie zetrzeć na proszek. Tak postały pigment był znacznie tańszy od azurytu.

Najbardziej jednak charakterystyczną cechą odkrytych fresków, było nadzwyczaj częste użycie bardzo żywej, soczystej czerwieni, już wkrótce nazywanej czerwienią pompejańską. Szczególnie dobrze widać to w tzw. wilii misteriów, pokrytej malowidłami przedstawiającymi misteria dionizyjskie. Czerwień stanowi tutaj rzucające się w oczy tło dla postaci, pokrywając całą ścianę.
Kolor wkrótce stał się modny wśród bogatych europejczyków, kojarzących pompejański wystrój z przepychem, jednak w miarę postępu wykopalisk okazało się, że reguła ta nie działa. W odkopywanych miastach czerwień pojawiała się w pomieszczeniach dla służby, w mniej zamożnych domach, w warsztatach i sklepach. Było to zaskakujące, bo potrzebny do uzyskania takiego intensywnego odcienia cynober był bardzo drogim barwnikiem. Dopiero późniejsze badania wykazały, że gdzieniegdzie kolor uzyskiwano przy pomocy takich tańszych barwinków, jak minia ołowiowa, hematyt czy nawet czerwona ochra, czasem fałszując nimi droższą farbę[1]
Mimo to problemem pozostawała częstość pojawiania się czerwieni w miastach. Stworzone później teorie estetyczne uznawały po prostu, że był to wówczas kolor modny, kojarzony z lepszym bytem i dlatego tak chętnie malowano na czerwono wszystkie pomieszczenia, jednak stopniowo zaczęły narastać co do tego coraz większe wątpliwości.

We wrześniu minionego roku świat obiegła wiadomość - czerwień pompejańska była żółta! Oczywiście polskie media trochę to przekręciły. Nie mogłem wówczas jednak znaleźć na ten temat szerszych materiałów - wiadomość była oparta na prezentacji z VII krajowej konferencji na temat kolorów w Rzymie, jednak materiały z tej konferencji ukazały się znacznie później. O co chodziło?

Intensywna czerwień na ścianach bogatych wilii była wynikiem zmieszania bardzo dobrze oczyszczonego, drobnoziarnistego cynobru w ilości do 85%, z czerwoną minią i niewielkim dodatkiem innych drogich barwników, tymczasem jednak w wielu miejscach nie udało się wykryć tych składników. Było zatem oczywiste że część ścian malowano tańszymi farbami, powstał tu jednak istotny problem. Jednym z tanich czerwonych barwników była ochra. Mogła to być oryginalna czerwona ziemia wydobywana w odpowiednich miejscach, lecz znacznie bardziej dostępna była ochra żółta, nazywana też ugrem. Ma ona między innymi tą własność, że silnie ogrzewana ciemnieje i staje się wyraźnie... czerwona. Opisał to już niezawodny Witruwiusz,  w swym obszernym poemacie De rerum natura.

Ochra to mieszanina tlenków i wodorotlenków żelaza, z minerałami ilastymi, często kaolinem, będąca osadem nanoszonym przez wodę w pobliżu wietrzejących złóż żelaza. Bardzo podobne rdzawe grudki można niekiedy znaleźć w piasku wydobywanym spod torfu lub w samym torfie - ten tzw. orszyn też stanowi mieszaninę związków żelaza, połączonych z kwasami humusowymi i innymi solami mineralnymi. Bardzo grube warstwy orszynu tworzą rudę darniową, gdzieniegdzie wydobywaną jako niskoprocentowa ruda żelaza.
Barwa ochry zależy od proporcji zawartych różnych minerałów żelaznych - barwa ciemnoczerwona to wynik przewagi hematytu, żółta to przewaga limonitu a brązowa to przewaga goethytu. Te minerały należy właściwie uporządkować:
Limonit to osad mineralny zawierający wodorotlenek żelaza z dużą ilością związanej krystalicznie wody, w wyniku jego wietrzenia, po usunięciu części wody i po przejściu części wodorotlenku w tlenki, zasadowe tlenki i tlenki uwodnione, uzyskujemy goethyt; dalsze odwadnianie i wietrzenie powoduje powstanie tlenku żelaza III a więc hematytu o barwie rdzawej. Jak łatwo się wam teraz domyślić, prażąc ochrę odwadniamy ją, zwiększając zawartość bezwodnego tlenku, co przesuwa kolor z żółtawego w rdzawy. Stąd zresztą brała się siena palona, używana jako pigment. Zależnie od intensywności wypalania oraz składu wyjściowego otrzymuje się różne odcienie. Wobec domieszek manganu, szczególnie w zielonkawych umbrach, kolor staje się tak ciemny, że bliski czerni.


No dobra, a Pompeje? 
Jak już pisałem, aby otrzymać tanią czerwoną farbę należało użyć ochry. Mogła to być zwykła, żółta ochra wypalona w piecu, ale mogła to być też naturalna ochra czerwona, w krajach śródziemnomorskich występująca w formie laterytu, a więc z domieszkami tlenków i wodorotlenków glinu. Ale zaraz zaraz - miasta zostały zasypane gorącym popiołem, a Herkulanum lawiną rozżarzonych materiałów piroklastycznych. Czy nie mogło być czasem tak, że w tych warunkach ściany pomalowane żółtą ochrą, stały się czerwone? Mogło tak być, co więcej od dawna domyślano się takiej możliwości.
W wielu miejscach obserwowano taką zmianę w obrębie jednej ściany - u dołu, gdzie gromadziły się pierwsze gorące partie popiołu, ściana jest czerwona, zaś u góry żółta. Podobne objawy obserwowano przy spękaniach ściany - w miejscu szczeliny ciepło głębiej wchodziło w mur i wokół niej czerwień była intensywniejsza. Problem natomiast polegał na czym innym - być może część ścian pierwotnie była żółta, ale na pewno cześć była pierwotnie czerwona bo pomalowano je czerwoną ochrą, jak jednak wiele było takich ścian? Jeśli przyjąć obowiązującą od dekad teorię, że mieszkańcy Pompejów nadzwyczaj upodobali sobie ten kolor, to oczywiście stwierdzimy że większość ścian była pomalowana na czerwono, ale naukowcy nie zwykli przyjmować takich poglądów za pewnik.


Sergio Omarini, kierownik zespołu z Visual Instytut National Research Council (Ino-CNR) we Florencji, postanowił zbadać skład farb metodami nieinwazyjnymi. Przedtem dla zbadania składu pobierano małe próbki ze ścian, jednak badanie mogło wówczas objąć tylko pewne punktowe miejsca. Zastosowanie przenośnego spektrofotokolorymetru pozwoliło na szybkie przebadanie większych powierzchni i porównanie ich składu. Przyrząd badał światło odbite od ściany, mierząc zależność między długością fali a absorpcją, czyli wyznaczając widmo. Najpierw jednak należało wykluczyć z badania ściany które malowano cynobrem. Zastosowano tu przenośny aparat do badań fluorescencji rentgenowskiej i odrzucono ściany zawierające rtęć i ołów. Następnie podzielono badane ściany na obszary czerwone, zółte i przechodzące z jednego koloru w drugi.
Przebadano łącznie 246 ścian postrzeganych jako czerwone i 57 żółtych. W tej liczbie znaleziono 165 pierwotnie malowanych ochrą czerwoną, wyróżniającą się zawartością tlenku glinu, 57 malowanych ochrą żółtą i 81 malowanych pierwotnie na żółto ale poczerwieniałych od gorąca. Krótko mówiąc co czwarta ściana zmieniła kolor[2] Efekt był szczególnie wyraźny w Herkulanum skąd pochodziła większość badanych powierzchni. Przykładem może być Willa Papirusów, gdzie Omarini przeprowadzał badania już kilka lat temu[3]:


Zmianę barwy widać na tylnych ścianach. Jeśli wyobrazić sobie że te ściany były żółte, to pomieszczenie nabiera innego charakteru.


Zatem czerwony może nie był aż tak powszechny w starożytności, ale i tak stanowił dużą część malunków, zaś freski w Willi Misteriów od początku były czerwone (aczkolwiek ich intensywny kolor w dużej mierze jest wynikiem późniejszych renowacji, polegających na podmalowaniu). Profesor Mary Bread, autorka słynnej książki o Pompejach skomentowała to krótko - to kolejny przykład pokazujący, że Pompeje nie zostały zamknięte w kapsule czasu[4]

------
http://en.wikipedia.org/wiki/Egyptian_blue

[1] Pigments and painting techniques of Roman Artists  http://www.rms.org.uk
[2]  Silvana Carannante, Francesca Civetti, Sergio Omarini, Filomena Schiano Lomoriello, Peppe Zolfo, Giallo Pompeiano,  http://www.nannimagazine.it