informacje



Pokazywanie postów oznaczonych etykietą związki nitrowe. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą związki nitrowe. Pokaż wszystkie posty

czwartek, 21 grudnia 2017

Poison Story (10.) - Chińskie ziółka

Zioła były stosowane w dawnej medycynie od tysiącleci. W czasach gdy nie znane były jeszcze leki syntetyczne, substancje roślinne i mineralne pozostawały jedyną możliwością leczenia wielu chorób. Także i dziś zioła mogą nadal być przydatne przy wspieraniu terapii. Jednak z ich użyciem wiąże się pewna charakterystyczna sprawa - otóż częste jest przekonanie o ich zupełnej nieszkodliwości, w związku z czym można je spożywać bez obaw o skutki uboczne. O nieprawdziwości tego poglądu przekonały się na własnym ciele pacjentki pewnej kliniki odchudzającej.

W 1992 roku pewna belgijska klinika na obrzeżach Brukseli, specjalizująca się w leczeniu otyłości, postanowiła poszerzyć swoją ofertę o środki bardziej egzotyczne i w oferowanej kuracji zaczęła stosować mieszankę chińskich ziół, którym tradycja przypisywała wspomaganie odchudzania. Po kilku miesiącach u pacjentek zaczęły się jednak pojawiać niepokojące objawy niewydolności nerek. U części doszło do niebezpiecznych dla życia martwic i zwłóknienia, potrzebne były przeszczepy. Szybko powiązano choroby nerek ze stosowaniem ziół, co jednak sprawiało ten problem, że składniki sprowadzanej mieszanki, a więc liść magnolii i ziele stefanii (Stephania tetrandra) nie były toksyczne dla nerek. Zatem powodem musiał być jakiś dodatkowy czynnik chorobotwórczy.
Tymczasem liczba chorych wzrastała i były to też osoby spoza pacjentów kliniki, które używały tej samej mieszanki. Na podstawie powtarzalności objawów uknuto termin medyczny "nefropatia chińskich ziół". Dopiero wraz z rozwojem technik analitycznych udało się w 1994 roku zidentyfikować w stosowanym preparacie prawdopodobną substancję toksyczną - był to kwas arystolochowy, występujący obficie w roślinach z rodzaju Kokornak. Spośród których kilka gatunków jest używanych w tradycyjnej medycynie chińskiej...
Kwas arystolochowy to pochodna fenantrenu. Już w latach 80. gdy badano jego właściwości, stwierdzono w doświadczeniach na szczurach, że powoduje uszkodzenia nerek i ma działanie rakotwórcze.[1]
W późniejszym śledztwie wyszło na jaw, że pojawienie się go w mieszance było prawdopodobnie wynikiem pomyłki. Chińska nazwa suszu stefanii to Han Fang Ji, gatunek kokornaka Aristolochia fangchii używany w innych schorzeniach to Guang Fang Ji. Zamówienie z Belgii podawało nazwę mało precyzyjnie jako Fang Ji. W tej sytuacji nie trudno o pomyłkę.

Kokornaki to rośliny zielne, lub drewniejące, zazwyczaj pnącza lub krzewinki o sercowatych liściach i rurkowatych kwiatach, niekiedy pułapkowych. Wiele gatunków jest uprawianych jako rośliny ozdobne i okrywowe. W Europie naturalnie rośnie kilka gatunków, spośród których najpospolitszy jest rosnący też w Polsce kokornak powojnikowy (Aristolocha clematitis).
W dawnej medycynie europejskiej kokornak był stosowany jako lek na schorzenia wątroby, przy żółtaczce, jako środek poronny lub przyspieszający poród, czy wewnętrznie na rany.[2] W tradycyjnej medycynie chińskiej wykorzystywanych jest kilkadziesiąt gatunków, zwykle były używane przy zapaleniu stawów i obrzękach, niektóre gatunki jako środki przeciwpasożytnicze. Pewien gatunek jest uważany za środek do odstraszania węży, w związku ze specyficznym, nieprzyjemnym zapachem wielu kokornaków.

W związku z tym odnotowane zatrucia w Belgii, których do 1994 roku doliczono się 105, wydają się być zaskakujące - jeśli od starożytności ziół tych używano w Chinach i Europie, to czemu wcześniej nie spostrzeżono ich toksycznego działania? Przyczyną jest zapewne czas stosowania - w dawnych zastosowaniach kokornaki były używane doraźnie, przez krótki czas. W tym przypadku ziołowy suplement na odchudzanie był zażywany regularnie przez kilka miesięcy, przez co objawy pojawiły się na tyle szybko, że można było je powiązać z użyciem suplementu.
Wyglądałoby zatem na to, że spożycie sporadyczne nie powinno być niebezpieczne.

 Wiele badań wskazuje też na bardzo silne działanie rakotwórcze kokornaków. W jednej z prac [3] opisano wyniki badań nerek i moczowodów usuniętych w związku z martwicą wywołaną kwasem aristolocholowym. Na 39 pacjentów u połowy w usuniętych nerkach stwierdzono ogniska nowotworów, u pozostałych pojawiały się dysplazje nabłonka będące stanem przedrakowym; żadnych zmian nie miały tylko dwie osoby.
Kwas arystolochowy ze względu na budowę, a jest płaską cząsteczką aromatyczną, ma skłonność do tworzenia interkalacji z DNA. Wpasowuje się pomiędzy płaskie cząsteczki zasad purynowych w nici kwasów nukleinowych i zaburza ekspresję genów. Podczas podziałów komórkowych generuje też punktowe mutacje związane z nieprawidłowym odczytem kodu. Wśród z genów które ze względu na położenie w chromosomach są przezeń blokowane częściej, jest też TP53, odpowiedzialny za wytwarzanie białka hamującego nowotworzenie. Mutacje w tym genie zostały uznane za najbardziej charakterystyczny skutek działania kwasu aristolocholowego. Ponieważ toksyna jest szybko wydalana przez nerki i zagęszcza się w moczu, zmiany mutagenne dotyczą najczęściej komórek nerek i nabłonka przewodów moczowych.
Połączenia DNA-AA (aristocholic acid) są bardzo trwałe, udawało się je znaleźć w komórkach nerek pacjentów z nowotworami, którzy zażywali kokornak kilkanaście lat wcześniej.

Gdy pojawiły się publikacje łączące charakterystyczne uszkodzenia nerek z narażeniem na kwas arystolochowy, zauważono podobieństwo objawów do znanej już od dawna Endemicznej nefropatii bałkańskiej. Chorobę opisano po raz pierwszy w latach 20. jako specyficzną dla pewnych społeczności w dolinie Dunaju i dopływów, na terenach obecnej Chorwacji, Bośni, Serbii, Rumunii i Bułgarii. Szczególnie dużo przypadków występowało w okolicach miasta Wraca.
Choroba rozwijała się wolno, występowała tylko u dorosłych w wielu 30-60 lat. Późniejsze badania u emigrantów którzy wyjechali z regionu endemicznego pokazały, że warunkiem zachorowania jest przybywanie w tamtej okolicy przez minimum 20 lat. Choroba przybierała postać przewlekłego, śródmiąższowego zapalenia nerek i stopniowo doprowadzała do zwłóknienia i martwicy, wymagających usunięcia narządu i dializowania lub przeszczepów. W sytuacji raczej kiepskiej opieki medycznej na tamtych terenach często nefropatia doprowadzała do przedwczesnych zgonów.
W średnio 50% przypadków nefropatii towarzyszyły nowotwory, głównie rak nabłonkowy nerek i przewodu moczowego. Szacuje się, że nawet w naszych latach symptomy o różnym nasileniu posiada co najmniej 25 tysięcy osób.

Przez długi czas podawano różne możliwe przyczyny endemicznego występowania tej choroby. Występowała wyraźnie rodzinnie ale nie była wprost dziedziczna. Pojawiała się u osób z innych rejonów, które mieszkały w regionie endemicznym dostatecznie długo; pojawiała się u mieszkańców rejonu endemicznego którzy przeprowadzili się w inne miejsce. Obszar występowania bałkańskiej nefropatii od kilku dekad pozostaje taki sam - nie pojawiły się nowe ogniska, ani nie zaniknęły stare. Próbowano więc powiązać ją z czynnikami lokalnymi.
 Zauważano na przykład, że podstawowym pożywieniem w tej okolicy są zboża, zaś większość chorych było rolnikami, przy czym ze względu na klimat i zwyczaje ziarno często zanieczyszczone było pleśnią, stąd też prawdopodobne wydawało się iż znaczenie ma tu jakaś toksyna. Najbardziej prawdopodobna wydawała się Ochratoksyna A, wytwarzana przez pleśnie, której obecność w paszy wywołuje w krajach północnej europy nefropatię u świń. Inna hipoteza skupiała się raczej na zbieżności obszaru zachorowań z obszarami wydobycia węgla, sugerując jakiś wpływ metali ciężkich z wód pokopalnianych czy niedoboru selenu w glebach nad złożami.
Jednak w latach 90. zauważono, że objawy nefropatii bałkańskiej i nefropatii ziół chińskich są do siebie zaskakująco podobne. Kokornak jest na tamtym obszarze bardzo pospolity, stanowi częsty chwast polny i części rośliny lub nasiona mogą zanieczyszczać zboża.

Hipoteza ta nie do końca tłumaczy wszystkie własności choroby, zwłaszcza silny endemizm nieraz ograniczający się do pojedynczych gospodarstw we wioskach, wydaje się więc, że nakłada się tutaj wiele przyczyn - sporadyczna ekspozycja na kokornak, niedobory w diecie, tryb życia i czynniki genetyczne. Ostatnio opublikowana praca na ten temat wskazuje na ten ostatni czynnik - alterację genów na chromosomie 3 w miejscu 3q25-26. Posiadacze tej mutacji są wyjątkowo wrażliwi na działanie toksyny kokornaku i to u nich rozwija się choroba. Tłumaczy to dlaczego spośród osób z rejonu endemicznego choruje tylko około 8% mieszkańców. Widocznie wrażliwość ta ma też różne natężenie, u nieszczęsnych mieszkańców południowej Europy rzadka ale powtarzalna ekspozycja na kokornak wywoływała objawy u kilku procent; wśród pacjentek belgijskiej kliniki, które regularnie łykały zioło przez kilka miesięcy, objawy rozwijały się u nawet 20%.[4]
Addukty DNA-AA zostały też wykryte w usuniętych organach, potwierdzając, że chorzy musieli być narażeni na ten związek.

Tymczasem pojawiają się kolejne doniesienia. Artykuł z Tajwanu przekazuje wyniki badań populacyjnych w których badano jaka jest częstość narażenia chorych na nowotwory na różne czynniki toksyczne, w porównaniu z resztą populacji. Okazało się, że narażenie na medykamenty zawierające azjatyckie gatunki kokornaków zdarzało się takim pacjentom wyraźnie częściej. Związek statystyczny okazał się silniejszy niż nawet narażenie na dym papierosowy. [5]

Znalazłem także opis polskiego przypadku nefropatii powiązanego z użyciem takiego preparatu. 17-letni pacjent z wyraźną nadwagą zgłosił się w związku z bólami i zawrotami głowy, których doznał w trakcie kuracji odchudzającej, stwierdzono u niego nadciśnienie. Po upływie kilku miesięcy nadciśnienie utrzymywało się, a do objawów doszedł świąd, nudności i osłabienie. Tym razem stwierdzono u niego białkomocz. Rozpoznano u niego przewlekłą nefropatię cewkowo-śródmiąszową i wtórną kwasicę. W ciągu następnych miesięcy choroba rozwinęła się tak bardzo, że konieczny był przeszczep nerki. W międzyczasie okazało się, że chory zażywał ziołowy preparat mający zawierać w składzie tylko niegroźne rośliny, jak rozmaryn, jeżogłowkę, tymianek i żeńszeń, który jednak podczas badań laboratoryjnych okazał się zawierać też kwas arystolochowy.[6]

W 2010 roku w Wielkiej Brytanii skazano właścicielkę chińskiej zielarni, która sprzedawała preparat Xie Gan Wan zawierający kokornak. Zażywająca pigułki 58-letnia kobieta, której miały pomóc na problemy dermatologiczne, doznała uszkodzenia nerek i raka dróg moczowych.[7]

Z tych powodów zaleca się obecnie, aby preparatów ziołowych zawierających kokornaki nie stosować nawet incydentalnie, a także unikać mieszanek zawierających ziele Stefanii, ze względu na możliwą pomyłkę nazwy rośliny u chińskiego producenta. Chińskie nazwy[8] gatunków kokornaka używanych w niektórych mieszankach to:
- Guang Fang Ji (Fangchi)  -  Aristolochia fangchi
- Xixin  -  Radix et Rhizoma Asari
- Guan Mu Tong -   Aristolochia manshuriensis
-  Qing Mu Xiang  -  Aristolochia cucurbitifolia
- Ma Dou Ling  -  Aristolochia debilis
- Tian Xian Teng -   Aristolochia contorta

--------
 Źródła:
[1] https://link.springer.com/article/10.1007/BF00302751
[2] http://rozanski.li/?p=824
[3] L. Nortier et al.; Urothelial Carcinoma Associated with the Use of a Chinese Herb (Aristolochia fangchi),  N Engl J Med 2000; 342:1686-1692June 8, 2000 DOI: 10.1056/NEJM200006083422301
[4] Marie Stiborová, Volker M. Arlt, and Heinz H. Schmeiser Balkan endemic nephropathy: an update on its aetiology,  Arch Toxicol. 2016; 90(11): 2595–2615.
Published online 2016 Aug 19. doi:  10.1007/s00204-016-1819-3
[5]  Hsiao-Yu Yang, Pau-Chung Chen, and Jung-Der Wang, Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference, BioMed Research InternationalVolume 2014 (2014), Article ID 569325, 9 pages http://dx.doi.org/10.1155/2014/569325
[6]  Konrad Walczak, Anna Krysicka, Dariusz Moczulski, Nefropatia ziół chińskich — opis przypadku, Forum Nefrologiczne 2010, tom 3, nr 4, 272–276 (PDF)
[7] http://wiadomosci.onet.pl/kiosk/leczenie-wysokiego-ryzyka/6tbhb
[7] https://www.hindawi.com/journals/bmri/2014/569325/tab1/

niedziela, 22 stycznia 2012

Błąd na błędzie - czyli analiza nieznanego związku organicznego

Tyle już tu pisałem o tym, że ludzie popełniają błędy, że w historii chemii zdarzały się pomyłki i mistyfikacje, że należy odnośnie głośnych i nowych odkryć zachować ostrożność, a jak przyszło co do czego sam się przed nimi nie ustrzegłem. W zasadzie więc nie ma się czym chwalić, jednak po fakcie pomyślałem, że moja historia może zawierać w sobie pewien sens moralny, albo po prostu nauczkę co do tego, o czym analityk powinien pamiętać oraz - a również i zwykłym czytelnikom może być to przydatne - na co powinien najbardziej uważać. A uważać powinien na siebie.

Przedmiot analiza związków organicznych jaki mam w tym roku, idzie mi tak sobie. Sporo reakcji już pozapominałem, więc na kolokwiach raczej nie błyskam nadzwyczajnymi wynikami, w zasadzie jednak praktyka powinna mi iść dobrze. I tak mi się też wydawało, gdy bez większych problemów oznaczyłem tożsamość pierwszego nieznanego związku.
Była to substancja stała, drobnokrystaliczna i jasnofioletowa z ciemniejszymi grudkami, o wyraźnym, ostrym zapachu fenolu. Topiła się w zakresie 59,5-62 st. C; nie rozpuszczała się w wodzie i 5% roztworze wodorowęglanu sodu, natomiast rozpuszczała w 10% NaOH co zaliczało ją do grupy rozpuszczalności KW. 2. Spalała się żółtym, kopcącym płomieniem, gasnącym po wyjęciu, wydzielając przy tym opary które po ostrożnym wwachlowaniu dłonią pod nos okazały się bardzo ostre i kręciło mnie po nich jeszcze następnego dnia. Z heteroatomów wykryłem tylko brom. Pomyślałem zatem - pachnie fenolem, pali się jak związek nienasycony - a sprawdzajmyż czy to jakiś fenol. Rozmieszałem trochę z wodą w której odrobinkę się rozpuszczał i dodałem żelaza III. Roztwór zabarwił się butelkowo z fioletowawym odcieniem przy dnie - więc jakiś fenol to jest. Dla otrzymania pochodnej krystalicznej potraktowałem próbkę rozpuszczoną w alkoholu, nitrującą mieszaniną kwasu azotowego i azotanu III sodu. Po przekrystalizowaniu, odsączeniu, przemyciu i wysuszeniu, zbadałem że moja nitropochodna, mająca postać jasnopomarańczowego proszku, topi się w zakresie 98-104 st. C.
Potem zajrzałem do odkserowanych z podręcznika tabel fizykochemicznych, wyszukałem związek najbardziej pasujący a prowadzący potwierdził - był to para-bromofenol. Proste.

Teraz należało zająć się drugim związkiem. Była to ciecz, bezbarwna, wodnista o wyraźnym migdałowym zapachu - jak nic, myślę sobie, albo benzen albo alkilopochodna. Więc sprawdzam rozpuszczalność - w wodzie nie, w 5% NaOH nie, w 5% HCl nie, w stęż. H2SO4 tak z rozkładem, w steż. H3PO4 tak. Zatem moja substancja należy do grupy rozpuszczalności O1. To też pasuje - pomyślałem.
Zatem palność: pomarańczowy, nie gasnący płomień, tak silnie kopcący aż obawiałem się, że będę musiał myć dygestorium. Następnie przedestylowałem próbkę, mierząc temperaturę par - w pewnym momencie temperatura zaczęła utrzymywać się na stałym poziomie, odpowiadającym temperaturze wrzenia, która w tym przypadku wyniosła 173 st. C. Zdecydowanie za wysoko na benzen (80 °C) ale pozostawały jeszcze pochodne.

Następnie heteroatomy - po stopieniu próbki z sodem, i rozprowadzeniu w wodzie nie wykryłem siarki, azotu i halogenów. Więc heteroatomów raczej nie ma. Pasuje

I cóż? Swoją teorię już miałem i się jej uparcie trzymałem. Najpierw więc próba na grupę aromatyczną. Zmieszałem próbkę z chloroformem i nasypałem łopatką odrobinę bezwodnego chlorku glinu, tak aby osiadł na ściance - zauważyłem przy okazji, że pył bezwodnego związku osiadający na skórze daje przejściowe uczucie ciepła. Następnie przechyliłem próbówkę aby ciecz zwilżyła związek, i obserwując powstające zabarwienie byłem pewien, że mam związek aromatyczny:
Barwne związki


Próba ta opiera się na dosyć ciekawym mechanizmie:
Schemat reakcji

Najpierw chloroform reaguje z chlorkiem glinu będącym, jak powszechnie wiadomo, kwasem Lewisa. Ten przyłączył jeden chlor i utworzył z chloroformem nietrwałe połączenie o charakterze pary jonowej, gdzie na kompleksie nieorganicznym mamy ładunek ujemny a na części organicznej ładunek dodatni. Następny etap to substytucja elektrofilowa i przyłączenie reszty chloroformu do pierścienia aromatycznego. Jest to w zasadzie zwykła reakcja Friedla i Craftsa. Ponieważ w reszcie pochodnej od chloroformu nadal znajdują się atomy chloru, wobec nadmiaru chlorku glinu - a pamiętajmy że nasza reakcja zachodzi w grudkach związku zwilżonych naszą mieszaniną - reakcja się powtarza. W powyższym przykładzie benzen ulega zamianie w trifenylometan, ale jest na prawdę wiele innych możliwości, z polimerami włącznie. Całość tworzy związki o dużej ilości struktur mezomerycznych, które pochłaniają różne długości fal i odznaczają się silnym zabarwieniem. Tutaj pojawił się kolor fioletowy, więc związek aromatyczny to był.
Pasuje - myślę sobie zatem. Ponieważ temperatura wrzenia nie pasowała do benzenu, dla potwierdzenia że mam do czynienia z pochodną alkilową, wytrząsałem próbkę z zakwaszonym roztworem manganianu VII potasu, który mi się odbarwił, co uznałem za potwierdzenie koncepcji. Z temperatury wrzenia pasował p-cymen. Niestety w tym momencie skończyły mi się zajęcia i ostateczną identyfikację odłożyłem na później.

Na następnych zajęciach zabrałem się za otrzymywanie pochodnej krystalicznej. Dla związków aromatycznych taką wygodną jest pochodna benzoilowa, to jest z przyłączonymi resztami kwasu benzoesowego. Substratem w tej reakcji jest chlorek kwasowy, czyli chlorek benzoilu, związek o specyficznym, bardzo silnym zapachu, który pomimo przeprowadzania reakcji pod dygestorium, zasmrodził całą salę. Moją substancję, rozpuszczoną w alkoholu, zmieszałem z 10% wodorotlenkiem sodu, dodałem 1 ml chlorku benzoilu i wytrząsałem aż roztwór przestał śmierdzieć, co znamionowało koniec reakcji.
Benzoilowanie


Wytrącony osad odsączyłem na lejku Buchnera, przemyłem ostrożnie odrobiną wody dla wymycia kwasu benzoesowego, który też powstaje w tej reakcji, nabiłem nim kapilarkę i zacząłem mierzyć temperaturę topnienia. Mierzyłem i mierzyłem. Mierzyłem powoli i ostrożnie. Mierzyłem z uwagą i powagą. Mierzyłem aż się znudziłem a temperatura na termometrze sięgnęła 350 st. C. Dalej nie chciałem ogrzewać, bo się skala kończyła a obudowa zaczęła podejrzanie pachnąć spalenizną, zaś moja pochodna topić się nie chciała. Żaroodporna pochodna, coś takiego! Prowadzący też się zdumiał i po moich ostrożnych zapytaniach kazał sprawdzić inne grupy funkcyjne.
No cóż, może coś przeoczyłem. Najpierw więc grupa alkoholowa, bo może to alkohol benzylowy, on też powinien pachnąć migdałami. W tym momencie niektórzy czytelnicy mogą się już domyśleć co też takiego miałem w próbówce, ja jednak nie skojarzyłem, i brnąłem dalej w pochodne podstawionego grupami alkilowymi benzenu jak to sobie na początku założyłem.
Próba Lucasa pozwalała w zasadzie na odróżnienie od siebie alkoholi o różnej rzędowości i była raczej niemiarodajna, ale odczynnika cerowego nie miałem. Do odmierzonej ilości stężonego kwasu solnego wsypałem chlorek cynku i po rozpuszczeniu dodałem mój związek. Podręcznik podawał, że dla alkoholi III rzędowych natychmiast a dla II rzędowych po pewnym czasie, powinno pojawić się zmętnienie a nawet oddzielenie się warstewki żółtawego oleju chloropochodnej (a dla I rzędowych nic), dlatego gdy po zmieszaniu wszystkiego roztwór zabarwił się tak żółtawo, uznałem próbę za trafioną.
Próba Lucasa, wynik fałszywy


Tabele z podręcznika podawały, że zbliżoną temperaturę wrzenia ma furfurol, więc od razu zapytałem prowadzącego czy to to. Nie, to nie alkohol. Trudno.

Nie alkohol, więc najlepiej sprawdzić od razu grupę karbonylową. Podręcznik podawał tu przepis na próbę z dinitrofenylohydrazyną, gdzie należało roztwór alkoholowy odczynnika dodać do próbki i w razie czego powinien wytrącić się osad odpowiedniej pochodnej, zgodnie z równaniem:
Powstawanie dinitrofenylohydrazydów


Odsypałem sobie zatem łyżeczkę pomarańczowego związku, wsypałem do próbówki, dodałem badaną próbkę i po wymieszaniu otrzymałem klarowny, pomarańczowy roztwór. Osad niet.
Dla pewności, że nie ma żadnej pomyłki, zrobiłem jeszcze próbę Legala, ograniczoną raczej do metyloketonow. Podczas tej próby metyloketony, reagując z pentacyjanonitrozylożelazianem III sodu (nitroprusydkem wedle starej nomenklatury), tworząc podobno alfa-c-nitrozoketony, ale tej znalezionej na jednej ze stron informacji nie udało mi się potwierdzić. W każdym razie po reakcji w zasadowym roztworze i po zakwaszeniu go kwasem octowym, powinno powstać fioletowe lub czerwone zabarwienie.
I rzeczywiście, gdy wymieszałem co trzeba i chlupnąłem octem, roztwór zrobił się czerwony a warstwa organiczna w intrygujący sposób się wzburzyła przy dnie, tworząc efektowne warstwy:
Próba Legala


A zatem jakiś metyloketon. Zajrzałem do podręcznika i uznałem, że musi to być fenolo-metylo keton. Pełen nadziei zapytałem prowadzącego - pudło! Ponadto po przesłuchaniu mojej relacji kazał powtórzyć pierwszą próbę na grupę karbonylową, tylko porządnie, i to będzie moja pochodna krystaliczna. Zajrzałem jeszcze raz do podręcznika: "alkoholowy roztwór dinitrofenylo..." - ale co tu zmieni alkohol, myślę sobie, on raczej nie bierze udziału w reakcji. Dla spokojności sumienia chlupnąłem do próbówki z otrzymanym wcześniej klarownym roztworem trochę alkoholu i oczywiście wytrącił mi się ładny, pomarańczowy osad:
Ostateczna pochodna


Zajrzałem jeszcze że ta pochodna, jest używana dla potwierdzenia tożsamości aldehydów i złapałem się za głowę. Jak mogłem o tym zapomnieć?! Przecież używałem tego związku. I opisałem. No ale...
Na następnych zajęciach, bo tamte mi się kończyły, odsączyłem pochodną, wysuszyłem, zbadałem temperaturę topnienia (228-231 st. C ) i oczywiście wyszło mi że moją substancją był benzaldehyd.

Aldehyd benzoesowy jest taką właśnie cieczą, pochodną benzenu, o silnie migdałowym zapachu. Nic zresztą dziwnego bo występuje w migdałach wraz z kwasem migdałowym i cyjanowodorem, a wszystkie te produkty hydrolizy cyjanoglikozydów pachną migdałowo. Taka prosta sprawa a ja się tyle męczyłem.

Oczywiście teraz już mogę wskazać gdzie popełniłem błąd, a był już na samym początku. Skoro moja substancja należała do grupy rozpuszczalności O1 to nie mogła być zupełnie niepolarną alkilopochodną aromatyczną, bo te należą do grupy N, ale byłem tak przekonany, że po zapachu odgadłem związek, że nie zwróciłem na to uwagi. Wyszło, że to związek o charakterze obojętnym, więc pasowało. Dlatego po potwierdzeniu aromatyczności nie sprawdzałem dalej i zupełnie niepotrzebnie otrzymałem pochodną benzoilową. Dlaczego wyszła "żaroodporna" nie wiem. Potem na samym początku źle wykonałem próbę na grupę karbonylową bo uznałem, że rozpuszczenie w alkoholu nie ma znaczenia dla wyniku i biedziłem się co dalej. I tak na identyfikację prostego związku zużyłem trzy pracownie.

A teraz morał:
Nie myśl mój czytelniku analityku, żeś za mądry, że od razu wszystko wiesz. Owszem, intuicja się przydaje, ale co innego przeczucie a co innego zaślepienie na to, co nie pasuje. Lepiej dłużej po kolei, na wszelki wypadek posprawdzać inne rzeczy, niż dojść po mozołach do pewnego punktu, i stanąwszy na nim powiedzieć "jestem w kropce". Nie sądź żeś lepszy niż autorzy podręczników, nie myśl, żeś mądrzejszy i nieomylny, bo tylko głupi sądzi, że nie myli się nigdy.
A ma też ta rada odniesienie do innych spraw,
nie chemicznych i nie analitycznych,
czego spokojne rozważenie
zostawiam czytelnikom.

niedziela, 20 marca 2011

Otrzymywanie o i p-nitrofenolu

Jak tu już obiecywałem, zajmę się teraz opisem, a właściwie relacją, z przeprowadzonej na zajęciach syntezy. Będzie to prosta, jak na możliwości chemii organicznej preparatywnej, reakcja nitrowania fenolu, i otrzymanie Orto-nitrofenolu i Para-nitrofenolu. Na początek jednak warto objaśnić pewne podstawowe pojęcia:

Fenol to pochodna benzenu (C6H6), związku aromatycznego, którego cząsteczka ma postać zamkniętego sześciobocznego pierścienia. W tym związku jeden z wodorów zastąpiony został grupą hydroksylową OH-, tak jak ma to miejsce w alkoholach, jednak własności fenolu różnią go od nich dość istotnie. Tlen z grupy hydroksylowej jest związany z pierścieniem znacznie silniej niż z wodorem, przez co ten stosunkowo łatwo się odszczepia, nadając fenolowi lekko kwaśny odczyn - dlatego też dawniej nazywano go Kwasem Karbolowym i z uwagi na silne właściwości bakteriobójcze używano jako pierwszego szpitalnego antyseptyka. Jest trujący i drażniący. W kontakcie ze skórą może powodować opatrzenia i martwice naskórka - co skądinąd wykorzystuje się w plastrach na kurzajki.
Znaczna różnica w elektroujemności między węglem (2,5) a tlenem (3,5) powoduje polaryzację wiązania i przesunięcie części ładunku na tlen - mówimy wówczas o "ujemnym efekcie mezomerycznym" bo tlen niejako "wyciąga" z pierścienia elektrony, powodując zaktywizowanie reaktywności. Równocześnie zachodzi proces odwrotny - jedna z wolnych par elektronowych tlenu może przeskakiwać na pierścień, tworząc nietrwałą strukturę jonową, z ładunkiem ujemnym na pierścieniu[1]. Jednak zaistniały ładunek nie jest ulokowany w jednym miejscu, lecz może przemieszczać się po pierścieniu, zajmując trzy równoważne pozycje:


Struktury mezomeryczne fenolu
Fakt ten decyduje nie tylko o dużej trwałości związku, lecz również o specyfice reakcji którym ulega, przede wszystkim zaś o tym gdzie i jak chętnie przyłączać się będą doń podstawniki.

Nitrowanie jest reakcją substytucji elektrofilowej, polegającej na zastępowaniu jednego z wodorów podstawnikiem, mającym właściwości elektrofila. Taki podstawnik ma niedomiar elektronów, i bardzo "lubi" przyłączać wszelkie dostępne. W tym przypadku elektrofilem jest nietrwały jon nitroniowy (NO2+) powstający w reakcji kwasu azotowego (V) z kwasem siarkowym (VI). A gdzie w fenolu mamy łatwo dostępny elektron? - tam gdzie w strukturach mezomerycznych pojawia się ładunek ujemny. Struktury takie, jak widać na powyższym obrazku, są trzy, dlatego też podstawić się mogą maksymalnie trzy grupy nitrowe i to wyłącznie w dokładnie określonych pozycjach.
W przypadku sześciowęglowego fenolu grupa nitrowa może połączyć się z węglem o numerach 2 (licząc węgiel połączony z grupą hydroksylową jako 1) lub 4 lub 6 - ponieważ jednak dla jednej grupy pozycje 2 i 6 są identyczne, uznaje się, że utworzyć się mogą tylko dwa różne związki: 2-nitrofenol i 4-nitrofenol. Dla pochodnych benzenu stosuje się nazewnictwo przypisujące danemu układowi przedrostek w nazwie, mianowicie Orto- dla położenia przy drugim węglu, Meta- dla węgla trzeciego i Para- dla węgla czwartego. Stąd nazwy: Orto-nitrofenol dla 2-nitrofenolu i Para-nitrofenol dla 4-nitrofenolu.

Na tym jednak nie koniec. Prowadząc nitrowanie konsekwentnie dalej otrzymamy dalsze pochodne, aż do trinitrofenolu zawierającego trzy grupy nitrowe przy węglach 2, 4 i 6. Związek ten to kwas pikrynowy, będący bardzo silnym materiałem wybuchowym. Związkiem bardzo do niego podobnym jest potrójnie znitrowany toluen - będący również prostą pochodną benzenu - w skrócie TNT. Jednak kwas pikrynowy, w odróżnieniu do Trotylu, jest bardzo nietrwały, wybucha od uderzenia, zgniecenia czy nawet nadmiernego podgrzania, dlatego z rzadka używa się go w charakterze spłonki, zaś wytworzenie większej ilości podczas syntezy, przynieść może nieprzewidziane skutki.


W zasadzie więc otrzymujemy dwa związki tego samego rodzaju i o takim samym wzorze sumarycznym, a jednak różnica pomiędzy nimi jest dość istotna. W przypadku izomeru orto, atom wodoru z grupy hydroksylowej leży blisko tlenu z grupy nitrowej i może pomiędzy nimi zachodzić słabe oddziaływanie nazywane wiązaniem wodorowym. W izomerze para taka sytuacja jest niemożliwa, a to z powodu zbytniego oddalenia grup. Wiązania takie mogą się jednak tworzyć między grupami hydroksylowymi jednych cząsteczek a grupami nitrowymi innych cząsteczek, przez co w ciele stałym tworzy się molekularna sieć. Fakt ten wpływa dość istotnie na właściwości fizyczne obu izomerów.
Wedle literatury [2] izomer para- topi się w temperaturze 112 °C, natomiast izomer orto- w zaledwie 46 °C - tak duża różnica jest spowodowania właśnie różną siłą związania cząsteczek ze sobą. No dobrze, mamy dwa związki, otrzymujemy je razem, w mieszaninie, i jak je teraz oddzielić? A bardzo prosto, i wykorzystujemy tu inną różnicę właściwości między izomerami - różnicę lotności z parą wodną.
Gdy skierujemy strumień gorącej pary wodnej na mieszaninę związków, jedne będą łatwo się wraz z nią ulatniać a inne trudno. Do takich łatwo lotnych nalezą olejki eteryczne kwiatów i innych części roślin, co pozwala na ich otrzymanie w stanie czystym, nadającym się do stworzenia zapachowej kompozycji perfum. Orto-nitrofenol z powodu luźniejszej struktury nie tylko jest łatwo topliwy ale i łatwo lotny, i można go oddzielić z wystarczającą selektywnością.

Po tym ogólnym wstępie czas na właściwą relację:

Wziąłem fenol mający postać jasnoróżowego proszku o bardzo intensywnym zapachu lizolu i stopiłem go z niewielką ilością wody. Do dwuszyjnej kolby wlałem stężony kwas siarkowy i chłodząc w krystalizatorze z wodą wsypałem Azotan (V) sodu, otrzymując mieszaninę nitrującą. Do środka wrzuciłem również mieszadełko magnetyczne, wyglądające jak podłużna tabletka, będące małym magnesikiem, i umieściłem na mieszadle. Gdy włączy się takie mieszadło, mały magnesik w kolbie zaczyna wirować, mieszając równomiernie ciecz i wyręczając chemika, który musiałby robić to ręcznie. Wygląda to tak.


Fenol

Do kolby podłączyłem duży wkraplacz i przelałem do niego stopiony fenol, mający postać malinowego płynu. Przez drugą szyję wprowadziłem termometr i zacząłem wkraplać płyn, cały czas sprawdzając czy temperatura nie przekracza 20 °C, w przeciwnym wypadku dolewałem do krystalizatora wodę lub dorzucałem lodu. Ta kontrola temperatury była potrzebna aby uzyskać tylko jednokrotnie znitrowany fenol, w wyższych bowiem powstaje wspomniany kwas pikrynowy, będący wszakże związkiem wybuchowym. Prowadzący zajęcia opowiadał nam, jak to kiedyś jedna ze studentek zagapiła się, i kolba się jej rozprysnęła w trakcie zajęć.
Gdy temperatura się ustabilizuje, a cały fenol zostanie dodany, zawartość kolby musi się mieszać i mieszać. Musi się mieszać bardzo i mieszać długo. Mieszać równomiernie i mieszać aż do znudzenia - dokładnie przez dwie godziny.

Gdy zawartość się już wymiesza i przereaguje, trzeba ją odstawić aż produkty, mające postać bordowo-brunatniej żywicy, oddzielą się od kwaśnego roztworu. Zawartość kolby wygląda wówczas tak:
Zawartość kolby po nitrowaniu

Kwaśny roztwór należy odlać i zmajstrować zestaw do destylacji z parą wodną. W mojej wersji wyglądał tak:



Zestaw do destylacji z parą wodną

A więc od lewej: kociołek do wytwarzania pary, mający wygląd metalowej butelki, stojący na palniku; szklana rurka zanurzona w kociołku o wolnym końcu, mająca zabezpieczać przed nagłymi skokami ciśnienia; specjalne doprowadzenie, wprowadzające strumień pary na dno kolbki; nasadka łącząca kolbkę z chłodnicą; chłodnica wodna Liebiega, będąca rurką otoczoną płaszczem w którym płynie zimna woda; i wreszcie odbieralnik, czyli zlewka na podwyższeniu, do której skapuje destylat. Bardziej czytelny rysunek.

Oddzielający się o-nitrofenol miał postać żółtego płynu. Gdy destylat stał się bezbarwny odstawiłem zlewkę na parapet aby produkt wykrystalizował. Miał postać długich, żółtych igiełek. Należało teraz przesączyć ciecz na lejku Buchnera pod zmniejszonym ciśnieniem, i na sączku został niemal czysty o-nitrofenol:


A co z p-nitrofenolem? Vogel, z którego "Preparatyki Organicznej" brałem przepis, podaje że pozostałość, po ochłodzeniu i odsączeniu, należy ogrzewać w temperaturze wrzenia z kwasem solnym i węglem aktywowanym, dla usunięcia barwnych zanieczyszczeń, przesączyć a przesącz odstawić do krystalizacji. Tego jednak na zajęciach nie robiłem. 
P-nitrofenol również ma postać jasnożółtego proszku, krystalizującego w postaci igiełek. W toku dalszych przemian można otrzymać z niego popularny lek przeciwgorączkowy - Paracetamol - stąd znaczenie jakie ma opisana synteza w przemyśle.


Gdy już otrzymało się preparat, należy go zważyć dla sprawdzenia sprawności preparowania. Vogel podaje sprawność 36%, lecz mi wyszło blisko cztery razy mniej. Najprawdopodobniej jest to wynik przegrzania, zbytnio bowiem szybko wkraplałem fenol do kolby, i nim lodem schłodziłem ją odpowiednio, temperatura podskoczyła do 30 stopni, więc część związku uległa dalszemu nitrowaniu a może i utlenieniu.

Dodatkowo należy zbadać, czy aby na pewno otrzymaliśmy dobry związek. O tym jak ważne może być takie sprawdzanie, przekonałem się będąc kiedyś na wycieczce szkolnej w laboratorium analizy elementarnej, gdzie usłyszałem anegdotę o doktorancie, który po kilku miesiącach skomplikowanej analizy dał im próbkę do potwierdzenia składu, i okazało się, że to nie to. Gdzieś popełnił błąd.

Taką prostą i szybką metodą jest porównanie temperatury topnienia otrzymanego związku z podawaną w literaturze. Aby to zrobić należy nabić niewielką ilością związku zatopioną z jednego końca kapilarkę:

Kapilarka nabita związkiem
 Aparatura do pomiaru jest nieskomplikowana, kapilarkę ze związkiem wsuwa się do podświetlanej komory z regulowanym ogrzewaniem, w której tkwi termometr. Kapilarkę obserwujemy przez okular. Podwyższamy powoli temperaturę i gdy kryształki zaczną się szklić, to jest nasączą się cieczą, sprawdzamy temperaturę i zapisujemy. Gdy związek całkowicie się stopi zapisujemy drugą temperaturę, otrzymując pewien przedział, w którym powinna się mieścić temperatura literaturowa.

W moim przypadku temperatura ta powinna wynosić 46 °C, jednak przedział jaki zmierzyłem, nie zgadzał się z tymi danymi - wyniósł 36-40 °C. Najpewniej to wynik wspomnianego przegrzania.

Komora topnienia. Po prawej - związek stały, po lewej stopiony.

Jednak pomiar temperatury jest jak widać niewystarczający, dlatego pozostałą część substancji bada się spektrometrycznie za pomocą aparatury NMR. Jeśli w otrzymanym wykresie występują takie piki jakie podaje literatura, to mamy pewność, że rzeczywiście otrzymaliśmy związek jaki był nam potrzebny.
 
I tak skończyłem syntezę. Należało tylko zmienić ubranie i wykąpać się, bo zaśmiardłem fenolem jak ze szpitala.

---------------------
Przypisy:
[1] - Zwykle obrazuje się to jako przeskok elektronu i pękniecie jednego z wiązań podwójnych pierścienia. Ponieważ do utworzenia wiązania potrzebne są dwa elektrony, po jego pęknięciu zostaje jeden niesparowany, stanowiący ów wolny ładunek. Ponieważ jednak trzy wiązania podwójne są rozmyte na cały pierścień, i każde jest niejako półtorakrotne, rzeczywista sytuacja jest trochę trudniejsza do opisu i sprowadza się do zwiększenia gęstości ładunku ujemnego w trzech miejscach.

[2] - Vogel Arthur Israel, "Preparatyka organiczna" Wydawnictwo WNT 2006 Wydanie III zmienione. - Gruba, ponad tysiącstronnicowa kniga, prawdziwa biblia preparatyków. Wszystkie dane i odniesienia dotyczą tego wydania.

Ilustracje wzorów pochodzą z Wikipedii. Zdjęcia moje.