informacje



sobota, 13 listopada 2021

Jednowarstwowy laser

 Kilka miesięcy temu w czasopiśmie Nature Materials ukazała się ciekawa publikacja niemieckich naukowców "Kondensacja bozonowa ekscytono-polarytonów w krysztale grubości atomu" [1], opisująca jak to przy pomocy egzotycznego stanu kwantowego otrzymano kondensat Bosego-Einsteina z polarytonów, a w efekcie doprowadzono w nich do akcji laserowej.

Brzmi to bez wątpienia bardzo egzotycznie. I trochę mało zrozumiale. Więc już tłumaczę co w tym jest takiego ciekawego.



Atomy i cząsteczki są w stanie pochłonąć energię z promieniowania elektromagnetycznego o pewnej dostrojonej częstotliwości, w związku z tym ich elektrony wchodzą w stan o wyższej energii. Jest on nietrwały, dlatego po pewnym czasie elektrony pozbywają się energii wypromieniowując fotony o pewnej określonej częstotliwości. Czasem emitowane promieniowanie ma inną częstotliwość niż to pochłonięte - na tej zasadzie działają farby fluoryzujące oraz świetlówki, wewnątrz których wytworzony jest ultrafiolet, a ten pochłania farba pokrywająca szklaną rurkę, emitująca z powrotem światło widzialne. Ale może być też tak, że emitowane jest takie samo światło jak to pochłonięte. Wtedy światło wyemitowane przez jedną partię materiału jest pochłaniane przez następną, mającą taką samą zdolność do pochłaniania tej właśnie fali. Skończony czas trwania stanu wzbudzonego powoduje, że światło jest rozpraszane, część energii zamienia się w ciepło, a materiał staje się nieprzezroczysty dla tej wzbudzającej go fali.

Jeśli stan kwantowy, w którym dochodzi to tych pochłonięć i emisji jest odpowiednio na to czuły, możliwa jest emisja wymuszona - uderzenie fotonu w atom lub cząsteczkę, która już nieco wcześniej pochłonęła inny foton i znalazła się w stanie wzbudzonym, wytrąca ją z tego stanu i wymusza wyemitowanie fotonu wcześniej. Teraz przez przestrzeń lecą dwa fotony. Tym rasem taki wymuszony foton ma taki sam kierunek i zwrot co foton wymuszający, nie dochodzi do rozpraszania w różnych kierunkach. Po tym procesie oba fotony, wymuszający i wymuszony, mają taką samą długość fali i kierunek

Akcja laserowa to sytuacja, gdy materiał czuły na takie procesy pochłaniania i emisji, zostanie na tyle mocno naświetlony, że bardzo duża ilość jego cząstek/miejsc pochłaniających znajduje się teraz właśnie w stanie wzbudzonym. Taki materiał jest "nasycony" energią światła i niewiele trzeba aby go z tego stanu wytrącić. Jeśli zarazem ten uzyskany stan jest czuły na emisję wymuszoną, a my stworzymy układ optyczny, w którym fotony poruszają się przede wszystkim w pewnym określonym kierunku, może dojść do akcji laserowej. Po przekroczeniu pewnego zagęszczenia poruszających się w tym samym kierunku fotonów, i miejsc wzbudzonych, czułych na emisję wymuszoną, następuje kaskadowe wymuszenie wypromieniowania światła z całej objętości materiału i powstaje impuls spójnej wiązki światła o tej samej częstotliwości, kierunku i zwrocie. Cała nagromadzona podczas naświetlana energia zostaje uwolniona w krótkim impulsie, stąd duża jasność wiązki laserowej.  



W publikacji omawianej tutaj opisywany jest przypadek wytworzenia takiej sytuacji w materiale półprzewodnikowym o grubości jednego atomu. Warstwę diselenku molibdenu umieszczono między warstwami tlenku krzemu i tytanu. Tlenek ten jest bardzo połyskliwy i odbija wiele fotonów do wnętrza wnęki, choć wciąż jest na tyle przezroczysty, że półprzewodnik między warstwami można manipulować. Był on naświetlany laserem o takiej częstotliwości, aby wytworzyć w nim wzbudzone stany elektronowe w sieci krystalicznej tej monowarstwy.
Wytworzono w ten sposób szczególny stan polarytonów ekscytono-fotonowych.

Ekscyton to kwant wzbudzenia elektronowego w materiale - pewien elektron zostaje wyrwany z poziomu podstawowego, w którym nie może być przewodzony przez półprzewodnik i nabiera takiej energii, że możliwe jest dla niego swobodne przewodzenie. Mówi się wtedy, że przeszedł on do "pasma przewodnictwa". W obrębie grupy elektronów o stanie podstawowym pozostaje po nim dziura, zachowująca się jak cząstka o ładunku dodatnim. Skoro te dwa stany w różnych poziomach energetycznych mają różne ładunki, to mogą utworzyć w materiale układ związany, podobny do miniaturowego atomu - dziura elektronowa, w pobliżu której krąży elektron wzbudzony. Stan taki można w pewnych sytuacjach traktować jak bardzo lekką cząstkę, stąd określenie ekscyton. 


Ekscyton ten oddziałuje z polem elektromagnetycznym, a w czasie ruchu i drgania może je sam wytwarzać, bo jest w końcu układem związanym ładunków a ruch ładunków emituje promieniowanie. Ekscyton może nawet pochłaniać energię promieniowania, co ma decydujące znaczenie w pewnych procesach przewodzenia i rozpraszania energii. Gdy rozpatrujemy cały proces w skali kwantowej okazuje się, że ekscyton reagujący z polem przyjmuje określone, kwantowane stany energetyczne i powiązany jest z kwantem pola elektromagnetycznego - fotonem. Taki stan nazywany jest polarytonem ekscytonowo-fotonowym. Może być on traktowany jak coś w rodzaju cząstki o określonych stanach kwantowych. Jest to wtedy kwazicząstka, złożona z fotonu i kwazicząstki ekscytonu, będącej stanem związanym elektronu z dziurą, czyli... też kwazicząstką. Taka "jakby cząstka" do sześcianu, ale ostatecznie w świecie kwantowym sytuacja ta generuje bardzo konkretne i możliwe do zmierzenia efekty.

Skoro polarytony mogą być traktowane jak cząstki z możliwością przebywania w różnych stanach kwantowych, to powinny podlegać w ramach tego ujęcia różnych kolektywnym zjawiskom. W normalnej sytuacji sąsiadujące ze sobą polarytony powinny mieć różne stany. Ale przy odpowiednim zagęszczeniu, wyrównaniu poziomów energetycznych i bardzo niskiej temperaturze, w której drgania materiału nie wybijają cząstek równowagi, możliwe jest otrzymanie sytuacji, w którym wszystkie cząstki w danym obszarze nabierają tego samego stanu kwantowego. Skoro tak, to przestają być od siebie wzajemnie odróżnialne i dla obserwatora, próbującego wykonać na nich pomiar, zachowują się jak jedna masa lub jak rozciągnięta w przestrzeni jedna cząstka. Nazywa się to kondensatem Bosego-Einsteina i otrzymywano już takie stany w chmurze bardzo schłodzonych gazów, gdzie cząstkami o zrównanych stanach energetycznych były normalne atomy.. 


 Stan wzbudzony ekscytonu nie jest bardzo trwały, w końcu następuje połączenie dziury ze wzbudzonym elektronem. Musi się więc w tym procesie uwolnić energia, i może być uwolniona jako światło. Z kolei utworzony z niego polaryton sam w sobie może znajdować się w wysokoenergetycznym stanie i schodząc do stanu o niższej energii emitować foton.

W tym kontekście zrozumiałe staje się co takiego zrobili naukowcy - wywołali w warstwie półprzewodnika powstanie polarytonów. Te naświetlano tak, aby weszły w wyższy stan energetyczny. Po chwili obniżając energię wydzielały fotony, a te odbijały się od otaczających warstw tlenku i wzbudzały kolejne polarytony. Gdy w wyniku bardzo ostrożnych manipulacji energetycznych udało się uzyskać odpowiednio duże nasycenie materiału wzbudzonymi polarytonami, w dobrze dobranych warunkach wszystkie wyrównały stan kwantowy, utworzyły kondensat Bosego-Einsteina z polarytonów. Zarazem stan energetyczny tych wyjściowych polarytonów jest wrażliwy na emisję wymuszoną, więc w układzie równoległych warstw odbijających dużo fotonów, w którym światło osiągnęło odpowiednią gęstość, doszło do równoczesnej wymuszonej emisji światła w tym samym kierunku i fazie z wszystkich polarytonów tworzących kondensat. Warstwa złożona z pojedynczych atomów zadziałała jak laser i wytworzyła wiązkę światła.

Po co było się tak męczyć? Potwierdza to rozważania teoretyczne, że powinien być możliwy do utworzenia kondensat z takich złożonych kwazicząstek - można więc przetestować różne dodatkowe szczegóły aby lepiej zrozumieć zjawiska zachodzące z kolektywnym oddziaływaniem kwazicząstek, a to zapewne rozwiąże niektóre niejasności w fizyce ciał stałych, od której zależy działanie elektroniki i wielu urządzeń. Obecnie bardzo obiecującym rozwiązaniem technicznym wydaje się opto-elektronika, w której układy scalone działałyby dzięki odpowiedniemu przesyłania światła a nie elektronów, co zwiększa szybkość działania. Po drugie daje to możliwość stworzenia najmniejszych możliwych źródeł światła o laserowych właściwościach, a to jest potrzebne w pewnych układach badawczych. Kolejny kierunek to wytworzenie tego stanu w wyższych temperaturach, bo eksperymentalna temperatura 4K jest ciężka do osiągnięcia w domowych warunkach. Stąd testy z uzyskania tego stanu na warstwach innych chalkogenów o podobnych właściwościach elektronowych, jak cięższy analog diselenek wolframu.
Gdyby zaś udało się wytworzyć taki stan w wysokich temperaturach, to kto wie, czy następną rewolucją w oświetleniu nie będą "żarówki polarytonowe". 

(całe to objaśnienie napisałem kilka miesięcy temu jako komentarz na Wykopie, a teraz uznałem, że ponieważ porządnie się wtedy napracowałem aby przystępnie wyjaśnić, to warto jest dać tekst i tutaj) 

--------

[1] https://www.nature.com/articles/s41563-021-01000-8

poniedziałek, 25 października 2021

Kiedyś w laboratorium (84.)


 Krystalizacja aminokwasów metodą wiszącej kropli.


Aby przy pomocy krystalografii zbadać substancję, należy ją dobrze wykrystalizować. Ale to bywa czasem trudne - rozbudowane, asymetryczne cząsteczki trudno odnajdują jakiś porządek w trójwymiarowej sieci. Mogą wytrącać się jako osady amorficzne, niekiedy mają skłonność do tworzenia oleistych cieczy przechłodzonych. Czasem substancja może tworzyć warstewkę na powierzchni naczynia z powodu adhezji, lub koncentrować się wokół nierówności. Dlatego wymyślono wiele metod krystalizacji, które czasem pozwalają na otrzymanie nowej formy krystalicznej, jaka w innych warunkach nie powstaje.

W metodzie wiszącej kropli wykorzystywane są niewielkie objętości roztworu substancji, co jest korzystne, gdy mamy jej akurat bardzo niewiele. Wykorzystywane jest to w zasadzie proste zjawisko zatężenia roztworu przez odparowanie, ale szybkość procesu jest kontrolowana. 

Przygotujemy roztwór badanej substancji, na przykład białka, w rozpuszczalniku. Dla biomolekuł jest to zwykle któryś z buforów. Przy pomocy pipety umieszczamy kroplę na spodniej stronie nakrywki, tak aby z niej zwisała ale nie mogła skapnąć. Nakrywamy tym ostrożnie naczynka zawierające taki sam roztwór ale o wyższym stężeniu substancji rozpuszczonych. Czyli na przykład na nakrywce jest roztwór białka w 0,1M buforze, a w naczynku bufor o stężeniu 0,5M. Po zamknięciu naczynka roztwory będą dążyły do pewnej równowagi - parowanie z mniej stężonego roztworu będzie bardziej intensywne, zaś ten bardziej stężony będzie w efekcie pochłaniał rozpuszczalnik i się rozcieńczał. W efekcie stężenie substancji w kropi będzie rosło, aż do przesycenia.

Ze względu na to, że powstające kryształy nie będą opadały na podłoże, co wynika z odwróconej pozycji, kryształ zawiesi się blisko spodniej powierzchni kropli. Ogranicza to zaburzenia wywołane oddziaływaniem kryształu z podłożem, jak na przykład spłaszczenie z powodu odcięcia jednej strony, która przylgnęła do dna. Odpowiednio dobierając różnice stężeń między roztworem w kropli i roztworem na dnie, można proces zatężenia przyspieszyć lub spowolnić, mogąc ustawić go tak, aby powstawał pojedynczy kryształ dostatecznej wielkości.

sobota, 21 sierpnia 2021

Co z tym tlenkiem etylenu?

   Media donoszą ostatnio często o wycofaniu żywności z powodu zanieczyszczenia tlenkiem etylenu - wypada więc coś o nim napisać, bo to pod względem chemicznym bardzo ciekawy związek.



  Zacznijmy może od etylenu. To najprostszy węglowodór nienasycony. Zawiera tylko dwa węgle połączone wiązaniem podwójnym. 

Przy pomocy odpowiednich warunków można jedno z tych wiązań rozerwać a wolne końcówki podstawić wodorem. Powstanie wtedy etan, który ze względu na maksymalne uwodorowanie (bez odrywania węgli całkiem) jest wtedy nazywany związkiem nasyconym. Podobna reakcja może zajść z innymi czynnikami, dlatego węglowodory z przynajmniej jednym wiązaniem podwójnym, alkeny, są bardziej reaktywne od tych z samymi pojedynczymi. Mogą uleć chlorowaniu z chlorem, polimeryzacji do polietylenu czy przyłączyć wodę i zamienić się w alkohole. 

No i oczywiście mogą łączyć się z tlenem. Etylem jest gazem palnym  i zależnie od dostępu tlenu spala się bądź całkowicie do dwutlenku węgla i pary wodnej, lub kopcąc z ubocznym węglem. Ale nie o taki rodzaj reakcji z tlenem chodzi przy powstawaniu tlenku etylenu. W bardzo specyficznych warunkach etylen przyjmuje jeden atom tlenu bez niszczenia struktury i bez oddawania wodorów. Służy do tego katalizator z metalicznego srebra. Wiązanie podwójne pęka, a brakujące końcówki łączą się z tlenem tak, że jest połączony z obydwoma. Powstaje bardzo ciekawa trójkątna cząsteczka. 


Już ta narysowana struktura powinna coś podpowiadać co do właściwości związku. Wiązania między atomami nie przebiegają zupełnie dowolnie, lecz są rozłożone w przestrzeni w pewnym układzie zależnym od struktury elektronowej atomu. Tlen nie ma zbyt wielu możliwości i zwykle przyjmuje układ, w którym jego dwa wiązania są zagięte pod kątem 105 stopni. Tak to wygląda w wodzie. Znamy związki, w których tlen jest połączony po obu stronach z jakąś częścią węglowodorową, to tak zwane etery, gdzie kąt zwykle jest nieco większy, w znanym ze zdolności usypiania eterze dietylowym jest to kąt 111 stopni.

A tutaj mamy 60. Trochę mało. W zasadzie w cząsteczce o formie trójkąta z bokami o podobnej długości nie ma za wielu możliwości, kąty powinny być zbliżone do tej wartości. Ale z drugiej strony wiemy, że gdyby grupy na końcu wiązań nie były tak blisko połączone, to tlen wolałby mieć je nieco szerzej. Tutaj więc wiązania są nagięte do innego kąta nieco na siłę, z pewną dodatkową energią potrzebną do ich utrzymania. A skoro tak, to cząsteczka jest trochę mniej stabilna i chętnie by z czymś zareagowała otwierając pierścień. 

Związki o takiej budowie, z mostkiem tlenu zamiast wiązania podwójnego, będące najkrótszymi możliwymi eterami pierścieniowymi, nabierają przez to szczególnej reaktywności i zaczęły być wyróżniane jako osobna grupa związków. Oficjalna polska nazwa chemiczna to epitlenki, ale dużo lepiej znane są pod nazwą epoksydów, będącą kalką z angielskiego epoxide. 

  O tym jak bardzo reaktywne są epoksydy przekonał się każdy, kto używał szybkoschnących klejów i przezroczystych żywic epoksydowych, gdzie pewne liniowe cząsteczki zawierające na końcach aktywne trójkąty epoksydowe reagują z innymi liniowymi cząsteczkami, mającymi na końcu grupy z którymi epoksydy chętnie reagują, tworząc ostatecznie usieciowaną, twardą masę plastyczną.

Tlenek etylenu jest tu o tyle wyjątkowy, że będąc bardzo prostą i małą cząsteczką, w normalnych warunkach jest gazem łatwo rozpuszczalnym w wodzie i bardzo łatwo wchodzi w różnorodne reakcje. Podczas takiej reakcji najczęściej jedna grupa chemiczna przyłącza się do tlenu. Powstaje trójwiązalny tlen, będący kationem, tak zwany związek oksoniowy. Ładunek dodatni na tlenie indukuje cząstkowe ładunki ujemne na węglach, do których jest przyłączony. Stają się one łatwymi miejscami ataku nukleofilów, a tymi przy takim dużym energetycznym potencjale cząsteczki może zostać cokolwiek w otoczeniu.

 W wodnych roztworach po zakwaszeniu reakcja najpierw z protonem a potem cząsteczką wody daje z  glikol etylenowy i jest to jedna z głównych reakcji do jakich się go wykorzystuje. Spośród produkowanych co roku milionów ton tego tlenku 75% zużywa się od razu na wytworzenie glikolu, triglikolu, poliglikolu i związków z grupami PEG


W reakcji z alkoholami, które są słabymi nukleofilami, powstają estry glikolu etylenowego, będące często plastyfikatorami. Z amoniakiem powstaje aminoetanol, zużywany potem do produkcji środków czyszczących. Reaguje też z dwutlenkiem węgla tworząc węglan etylenu, rozpuszczalnik o wysokiej polarności używany w akumulatorach litowo-jonowych. Takie reakcje są badane jako jedna z metod usuwania dwutlenku węgla z gazów poprocesowych. 

  Skoro tlenek etylenu tak chętnie i łatwo z wszystkim reaguje, to powinno być jasne, że jest związkiem toksycznym dla organizmów żywych. W każdym organizmie jest bowiem pod dostatkiem amin, alkoholi i innych substancji, z którymi może wejść w reakcje, zmieniając białka, enzymy, metabolity wtórne i ostatecznie też podstawiając i unieczynniając składowe DNA i RNA. Dlatego już dawno temu znalazł zastosowanie w chemicznej, niskotemperaturowej dezynfekcji. Wciąż jest jednym z najczęściej używanych związków do sterylizacji sprzętu medycznego, który nie może być autoklawowany - głównie przedmiotów i pojemników z tworzyw sztucznych, które w wysokiej temperaturze by się stopiły lub skurczyły. Dezaktywuje bakterie, pierwotniaki, drobne pasożyty a nawet wirusy.

Dzięki gazowej postaci w normalnych warunkach może być stosowany w komorach, w których przedmiot jest owiewany tym środkiem, co pozwala mu wniknąć do drobnych porów i szczelin bez żadnych rozpuszczalników. Ponieważ jest też bardzo silnie toksyczny dla owadów może być stosowany do niszczenia korników, moli i drobnych roztoczy w na przykład zabytkowych meblach, książkach, tkaninach i różnych obiektach muzealnych. 

Niestety szkodzi też większym organizmom. U ludzi narażonych na jego opary działa toksycznie na drogi oddechowe. Już stężenie 200 ppm powoduje podrażnienie błoń śluzowych nosa i gardła. Zapach związku staje się wyczuwalny dopiero w wyższych stężeniach, od 250-300 ppm, jest słodkawy, podobny do eteru. Wraz ze wzrostem ilości w powietrzu narasta działanie drażniące. Następuje uszkodzenie tchawicy i oskrzeli; dochodzi do zwężenia i zatkania drobnych oskrzelików czy uszkodzenia pęcherzyków płucnych. Stężenia przekraczające 800 ppm są już uważane za bezpośrednio groźne dla życia. Wydaje się, że szczury i myszy są bardziej wrażliwe od człowieka. Efekty uszkodzenia płuc nie są widoczne od razu, rozwijają się w ciągu kilkudziesięciu godzin od narażenia.

Część związku ulega wchłonięciu do organizmu dając niespecyficzne objawy nawet przy niskich dawkach. Narażeni zgłaszają bóle głowy, nudności i wymioty. Substancja wydaje się mieć powinowactwo do układu nerwowego. Osoby przewlekle narażone na niskie dawki (już 3 ppm w czasie pracy) doświadczały neuropatii odwodowych, gorszej koordynacji ruchowej i pogorszenia pamięci. 

Skutkiem narażenia jakie jest najbardziej interesujące i wywołuje najczęściej alarm, jest jednak rakotwórczość. Każdy związek, który jest na tyle reaktywny, że jest w stanie utlenić, halogenować a zwłaszcza alkilować struktury biologiczne, w tym DNA, będzie doprowadzać do mutacji i zagrożenia nowotworami. A tlenek etylenu jest akurat na tyle silnym środkiem alkilującym, równocześnie jednak nie rozkładającym się natychmiast po rozpuszczeniu w wodzie i przez to mogącym działać na organizm także poza płucami. U szczurów przewlekła, ciągła ekspozycja na dawki poniżej wywołujących podrażnienia zwiększa częstość takich nowotworów jak międzybłoniak, białaczka czy guzy mózgu. U ludzi narażonych zawodowo na ten związek efekty są bardziej subtelnie i nie takie bardzo silne. W analizie podgrup widać nieco większą częstość nowotworów piersi u kobiet, guzów limfoidalnych u mężczyzn i nowotworów kości ogółem. Zarazem jednak wiele analiz nie wykazuje aby generalnie zwiększało to śmiertelność z powodu nowotworów. 

Wyniki te doprowadziły do ostrego wyśrubowania norm narażenia na związek. Na przykład w Unii Europejskiej tlenek nie może być używany do odkażania żywności ani do zabijania owadów we wnętrzach budynków. Ostatnie przypadki wycofania żywności, takiej jak nasiona sezamu czy mleko w proszku to zapewne wynik fumigacji tlenkiem magazynów w Indiach, w których przechowywano te produkty. Jeden z ostatnich takich przypadków to wycofanie lodów, zawierających jako zagęstnik mączkę chleba świętojańskiego, w której wykryto tlenek etylenu na niskich poziomach. Stało się to zresztą powodem sporu między różnymi instytucjami regulującymi. Proponowano dopuszczenie do obrotu produktów zawierających tlenek w ilościach wykrywalnych ale niemożliwych do oznaczenia ilościowego (ilość tak mała, że z powodu ograniczonej czułości metody nie da się powiedzieć dokładnie ile, a jedynie, że jest). Ostatecznie po alarmach organizacji konsumenckich przyjęto zasadę, że każda wykrywalna ilość dyskwalifikuje żywność, bo nie da się ustalić bezpiecznej dawki.[f] Kwestią sporną jest, czy można to stosować do żywności, w której surowiec z przekroczoną normą został już przetworzony i w ostatecznym produkcie zanieczyszczenie przestaje być wykrywalne bo być może się rozłożyło.[b]
-------------------------------------
Źródła

[b] https://www.brusselstimes.com/news/belgium-all-news/181057/not-all-recalls-for-ethylene-oxide-are-necessary-warns-belgiums-food-safety-agency/

[f] https://www.foodwatch.org/en/news/2021/toxic-ethylene-oxide-in-foods/?cookieLevel=not-set

https://www.epa.gov/sites/default/files/2016-09/documents/ethylene-oxide.pdf

https://www.ciop.pl/CIOPPortalWAR/file/89150/2019121311453&Tlenek-etylenu.pdf

https://en.wikipedia.org/wiki/Ethylene_oxide



wtorek, 27 lipca 2021

Chemiczne Wieści (24.)

 Węże pokażą skażenie

Ostatnie badania prowadzone w Japonii, w terenach skażonych po awarii elektrowni jądrowej Fukushima, koncentrowały się na próbach znalezienia jakiegoś znacznika wskazującego na lokalny poziom skażenia ekosystemu. I okazało się, że całkiem niezłym, dużo lepszym od myszy i ptaków, są węże. Spędzają praktycznie cały czas na ziemi i lubią się zaszyć w jamach i norach. Pokonują w ciągu dnia do 65 metrów ale zwykle krążą w pewnych niedużych terytoriach. Stopień napromieniowania takiego węża odzwierciedla ilość radionuklidów dostępnych biologicznie w glebie, roślinach i w trudno dostępnych szczelinach, i norach, do których nie zajrzy radiometr. [1]

Najbardziej izolująca sól

Nowy materiał wytworzony przez badaczy z Liverpool University jest obecnie związkiem nieorganicznym o najmniejszym przewodnictwie cieplnym. 


 

Większość materiałów izolacyjnych jakie znamy, to zwykle nasycone związki organiczne, lub materiały puszyste, posiadające w strukturze dużo luk wypełnionych powietrzem, które ma niską przewodność cieplną. Tak jest ze styropianem, gdzie polistyren zamyka w sobie wiele luk wypełnionych gazem; tak jest z wełną mineralną czy gazobetonem. Teraz natomiast odkryto materiał, który będąc lity ma przewodnictwo cieplne równie małe co w przypadku powietrza.

 W badanym materiale wykorzystano dwa rodzaje związków, tworzące domeny, które połączono w kompozyt. Oba składniki tego połączenia wykazywały niskie przewodnictwo cieplne dzięki szczególnej budowie krystalicznej, która nie sprzyja przenoszeniu fononów (kwantów drgań sieci), rozpraszając je i zmniejszając ruchliwość. Ich połączenie ma jeszcze lepsze właściwości, dzięki pewnym efektom addytywnym. Jak piszą autorzy, jeśli przewodność cieplną stali zapisać jako 1 jednostkę, to tytan ma 0,1 tej przewodności, cegła 0,01; nowy materiał 0,001 a powietrze 0,0005. 

Jeden ze składowych związków powinien być dobrze znany studentom - wytrącanie oksychlorku bizmutu z roztworów chlorku jest często podawaną reakcją charakterystyczną. Jest to sól, której kryształy mają warstwową strukturę, z płaszczyzną kationów bizmutu mocno związanych z tlenem i chlorem i przedzielonych nietypowym stykiem dwóch warstw anionów chlorkowych. Aniony chlorkowe słabo ze sobą oddziałują, stąd odległość warstw na linii Bi-Cl---Cl-Bi jest dość duża. Kryształy związku  zaczynają z tego powodu wywoływać iryzację światła padającego, a ponieważ wytrącający się osad jest drobnokrystaliczny, tworzą opalizującą masę podobną do perłowej. 

Drugi składnik to półprzewodnik tlenek-selenek bizmutu, który już wcześniej znany był z niskiego przewodnictwa cieplnego. Sztuką było połączenie warstw tych obu związków w jeden, ciągły materiał, i to tak, aby były odpowiednio usytuowane przestrzennie. Oba wykazują bowiem wyraźną anizotropię właściwości i ich przewodnictwo cieplne bardzo mocno zależy od kierunku. Przy odpowiednim zgraniu obu kierunków efekty przewodnictwa wzajemnie się uzupełniły i otrzymany kompozyt ma przewodność 100-10 razy mniejszą niż składniki mieszaniny.[2]

Potencjalne zastosowania są oczywiste - lepsza izolacja tych układów, w których straty ciepła ograniczają wydajność, na przykład w silnikach cieplnych i instalacjach.

Przezroczysta farba chłodząca

Chłodzenie radiacyjne to metoda odprowadzenia ciepła przez wypromieniowanie go na zewnątrz. Znanym przykładem są radiatory w sprzętach elektronicznych, które z jednej strony odbierają ciepło od grzejącego się elementu, a z drugiej oddają je w przestrzeń. W niektórych zastosowaniach, jak odbiór ciepła z urządzenia, jest to wystarczające. Ale czasem użycie radiatorów chłodzących może być kłopotliwe. Ochłodzenie w ten sposób mocno nagrzewanej ściany budynku wymaga radiatorów, które ją w praktyce zabudują. Jednym z takich układów, które bywają czasem używane, jest warstwa z odbierającego ciepło emitera, nakryta szybką, która wypuszcza promieniowanie cieplne na zewnątrz. Ponieważ szybka ta przepuszczała i światło i ciepło, to układ tracił właściwości gdy był wystawiony na słońce, to bowiem promieniuje dość dużą część energii jako bliską podczerwień. Podczerwień ze słońca wpadnie więc do układu przez przezroczyste okienko i nagrzeje radiator. Alternatywą są powierzchnie lustrzane, które odbijają część promieniowania cieplnego i słonecznego z zewnątrz i nie pozwalają wnętrzu się nagrzać. W praktyce oznacza to, że szyby będą mocno przyciemniały widok.

Pomysł aby jakoś temu zaradzić nie był trudny i zadaniu podołali badacze z Korei. Opracowali oni warstwę, którą można nałożyć na przezroczyste materiały, która przepuszcza światło widzialne, odbija bliską podczerwień a przepuszcza podczerwień daleką. W ten sposób światło widzialne wnika do środka bez przeszkód, zaś bliska podczerwień słońca jest zatrzymywana. Z kolei wnętrze okryte taką osłoną nie jest nagrzane tak mocno, aby emitować bliską podczerwień (taką emitują ciała nagrzane do temperatury bliskiej żarzeniu się na czerwono), więc większość energii wydostanie się na zewnątrz jako podczerwień średnia i daleka. Nierównowaga radiacyjna takiego układu jest dostateczna, aby nawet w pełnym słońcu wnętrze osłony pozostawało chłodne. [3]

-------

[1] https://bioone.org/journals/ichthyology-and-herpetology/volume-109/issue-2/h2019282/Movement-Behavior-and-Habitat-Selection-of-Rat-Snakes-Elaphe-spp/10.1643/h2019282.short 

[2] https://science.sciencemag.org/content/early/2021/07/14/science.abh1619 

[3] https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202002226