informacje



Pokazywanie postów oznaczonych etykietą polimery. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą polimery. Pokaż wszystkie posty

piątek, 1 września 2017

Zrób sobie sam: plastik z mąki

Kolejne proste doświadczenie, możliwe do wykonania w domowej kuchni - otrzymywanie przezroczystej masy plastycznej z mąki.

Jednym z głównych problemów współczesnego rozpowszechnienia tworzyw sztucznych, są rosnące góry odpadków, które w przypadku odpornych chemicznie materiałów jeszcze długo pozostaną w środowisku w niezmienionej formie. Plastikowe śmieci, które nie trafią do koszy na śmieci i dalej na wysypiska, staną się częścią gleby lub trafią do jezior, rzek i mórz i pozostaną tam na długo. Jest to problem nie tylko estetyczny czy związany ze skończoną pojemnością składowisk - plastik szkodzi też ostatecznie zwierzętom. Już teraz obserwujemy ptaki, morskie ssaki i ryby, które giną z powodu niestrawialnych plastikowych części połkniętych z powodu podobieństwa do czegoś pożywnego, lub za sprawą zaplątania w nici i sieci.
Pod wpływem działania słońca, wody i organizmów plastik zamiast degradować rozpada się na mikroskopijne cząstki, które włączają się w łańcuch pokarmowy. Możliwe, że już teraz zjadamy je z jedzeniem, zupełnie o tym nie wiedząc.

Jednym ze sposobów na zmniejszenie tych efektów, oprócz recyklingu, akcji sprzątania czy uświadamiania społeczeństwa, jest rozpowszechnianie tworzyw ulegających rozkładowi. Zamiast torebki foliowej, niech będzie papierowa, opakowanie ciastek niech będzie zrobione z celofanu. Poszukuje się też nowych materiałów o właściwościach podobnych do dotychczasowych tworzyw sztucznych i możliwie najtańszych w produkcji.
Biodegradowalne są alifatyczne poliestry jak nylon-6 czy polikaprolakton, dostatecznie przy tym odporne na wodę i tłuszcze, coraz większy udział ma w ostatnich latach poli-kwas mlekowy, w zastosowaniach medycznych na przykład na absorbowalne nici chirurgiczne od dawna stosowany jest poliglikolid.
Jednak materiałem biodegradowalnym mającym największy udział w rynku a przy tym stosunkowo prostym w produkcji jest termoplastyczna skrobia.

Skrobia to naturalny polimer wytwarzany przez rośliny jako substancja zapasowa. Składa się z połączonych wiązaniami alfa-glikozydowymi cząsteczek glukozy, tworząc łańcuchy długie do kilku tysięcy członów. W naturze występuje w formie ziaren złożonych z liniowej amylozy, która rozpuszcza się w gorącej wodzie i rozgałęzionej amylopektyny która zaczyna się rozpuszczać już w zimnej. Rozgotowując zawiesinę skrobi w wodzie otrzymujemy kleisty koloid stosowany jako krochmal do tkanin, oraz jako tani klej do papieru i drewna. Rozgotowana skrobia z dodatkiem cukru i soków owocowych, to zaś kisiel.
Po wysuszeniu takiego kleiku otrzymujemy twardą masę, która w miarę upływu czasu staje się krucha. Cząsteczki skrobi łączą się w zagęszczone struktury podobne do kryształów, tworząc twarde ziarna. Ta tak zwana retrogradacja uniemożliwia wykorzystanie masy wysuszonego krochmalu jako materiału, oraz przy okazji odpowiada za proces czerstwienia pieczywa.

Można jednak zmienić skrobię w materiał o bardziej pożądanych właściwościach - trzeba ją po prostu stopić.  Skrobia ma bardzo wysoką temperaturę topnienia - około 200 stopni, praktycznie w punkcie termicznego rozkładu. Można jednak dodać do niej substancje, które znacznie obniżają temperaturę topnienia i pozwolą przetwarzać skrobię bez przemian chemicznych. Są to tak zwane plastyfikatory.
W tym przypadku są to substancje silnie oddziałujące z cząsteczkami skrobi i tworzące między nimi mostki za pomocą wiązań wodorowych. Dzięki temu każdy łańcuch połączonych glukoz zostaje otoczony małymi cząsteczkami plastyfikatora, zaś luźniejsza struktura materiału łatwiej daje się kształtować. Plastyfikatorami dla skrobi są polialkohole - sorbitol, ksylitol oraz gliceryna. Ta ostatnia ma tą zaletę, że jest płynna, pozwala więc otrzymać masę bardzo miękką i elastyczną nawet w niskich temperaturach. Oraz jest tania i łatwo dostępna.
Sztućce ze skrobi

Powstała w ten sposób masa może być dostatecznie twarda i odporna na rozrywanie aby można było zrobić z niej opakowania, torby czy jednorazowe sztućce. Po spienieniu tworzy materiał podobny do styropianu, nadający się do opakowań a w formie granulatu jako wypełniacz pudeł z przesyłkami w zastępstwie drobnych styropianowych kulek. Termoplastyczna skrobia jest też niestety rozpuszczalna w wodzie. Dla zachowania właściwości w wilgotnych warunkach, na przykład w kontakcie z jedzeniem, dodaje się do niej substancje zmniejszające nasiąkliwość, na przykład kwas stearynowy powodujący, że masa staje się woskowata i nie wchłania wody, można też pokryć powierzchnię naturalnym woskiem. Skrobię można także mieszać z innymi biodegradowalnymi tworzywami o większej odporności, na przykład polilaktydem. Przy dobrym doborze składników można z takiej masy wyprodukować na przykład kubki czy butelki na wodę, ulegające całkowitemu rozkładowi w ciągu kilku miesięcy po zakopaniu w ziemi.
Biodegradacja butelki z polilaktydu
Domowym sposobem raczej trudno będzie zrobić ekologiczny kubek czy butelkę, ale stworzenie choćby próbki materiału podobnego do plastiku samo w sobie jest ciekawe.

Wykonanie
Do stworzenia bioplastiku potrzebujemy mąki zawierającej dużo skrobi, ja użyłem po prostu czystej skrobi ziemniaczanej. Plastyfikatorem będzie gliceryna, możliwa do kupienia w aptece w buteleczkach po 30 i 50 g. Użyłem też jako dodatku kwasku cytrynowego, który polepsza właściwości tworzywa. [1]
Masę będziemy mocno podgrzewali, najlepiej użyć małego garnka lub rondelka. Po otrzymaniu, płynną skrobię trzeba będzie na czymś rozprowadzić, najlepsza będzie metalowa tacka, może foremka, ja używałem metalowej miski. Nie próbowałem z fajansowymi i szklanymi talerzami, bo nie byłem pewien czy nie pękną.

Po paru próbach stwierdziłem, że najlepsza proporcja przy której tworzywo dobrze wyglądało, to 3 płaskie łyżki stołowe skrobi i 1 łyżka stołowa płynnej gliceryny (80%). Do skrobi i gliceryny dodajemy kilka łyżek wody, musi nam powstać bardzo leista mieszanka, bardziej wodnista niż kleik. Podczas dalszego procesu woda zostanie odparowana, ale na razie potrzebna jest aby masa była gładka i bez grudek.

Do mieszanki dodałem jeszcze szczyptę kwasku cytrynowego. Następnie przelałem ją do garnka i szybko mieszając podgrzewałem na średnim ogniu (a raczej średnim grzaniu maszynki). W pewnym momencie mieszanina staje się kleista, aby wszytko dobrze się wymieszało trzeba szybko mieszać od dna i rozcierać formujące się grudy.

W końcu cała mieszanina formuje gęsty, bardzo lepki glut o szklistym wyglądzie. Zanik białego koloru to oznaka rozpuszczenia całej skrobi.

Ale to jeszcze nie koniec - powstały gęsty ulepek należy jeszcze podgrzać. Ja rozcierałem go po dnie łyżką, aby w miarę równomiernie się ogrzał. W miarę upływu czasu stawał się coraz bardziej płynny, pienił się od pary wodnej:

Aż w końcu przybrał konsystencję syropu:

W zasadzie w tym momencie można uznać, że mamy do czynienia ze stopioną masą skrobi w glicerynie, dalsze podgrzewanie powoduje jedynie odparowanie wody i warunkuje to na ile łatwo będzie końcową masę uformować, oraz jak szybko stwardnieje. Za pierwszym razem grzałem masę niemal do karmelizacji, była bardzo gęsta i zastygała zaraz po wylaniu na dno miski. Otrzymałem z niej gruby kawałek lekko spienionej masy, dosyć przezroczystej i elastycznej:

Za drugim razem grzałem płynną masę krócej, chcąc otrzymać cieńszą warstwę. Wylałem ją na dno odwróconej miski, tak aby się rozpłynęła i aby powstał arkusz podobny do folii:

Tym razem stwardnienie i wysychanie trwało dłużej. Po jakiejś godzinie stwierdziłem, że z wierzchu jest już sucha i twarda, ale pod spodem nadal bardzo kleista. Obawiając się, że w ostatecznej wersji przyschnie mi do miski nie do oderwania, ostrożnie podważyłem i zerwałem z naczynia cały płat, aby podsuszyć go z obu stron. Ostatecznie powstał mi płat grubszej folii podobnej trochę do folii do pakowania:

Skrobiowy bioplastik jest półprzezroczysty, miękki w dotyku i elastyczny. Twardość i elastyczność zależy ostatecznie od stosunku skrobi do gliceryny, metodą prób i błędów można sobie ustalić idealną proporcję. Okazał się też bardziej niż się spodziewałem odporny na rozerwanie. W temperaturze około 110-120 stopni ponownie się topi, można więc kształtować go na gorąco.

Ostrożność
Ze względu na to, że masa jest mocno podgrzewana w garnku, zaś pieniąc się może pryskać, raczej nie jest to doświadczenie do robienia dla dzieci. Możliwe jest przypalenie garnka przy niedostatecznym mieszaniu, mi się to nie zdarzyło ale innym może się przydarzyć. Z domyciem garnka nie było problemu.

-------
[1] The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol; Starch Volume 57, Issue 10 No. 10 October 2005 Pages 494–504

piątek, 21 lutego 2014

Superglue + wata = ?

O superkleju już tu kiedyś pisałem w artykule na temat ujawniania odbitek linii papilarnych, teraz na krótko powrócę do tej substancji aby opowiedzieć o nietypowej reakcji.

Z pewnością wielu bądź widziało bądź choćby słyszało o tym filmie:

Wata polana superklejem zapala się? Czy to możliwe?

Superkleje opierają swe działanie na samorzutnej polimeryzacji cyjanoakrylanu metylu bądź etylu.
Jest to ester o specyficznej budowie - przy węglu alfa (pierwszy przy grupie karboksylowej) znajduje się grupa nitrylowa i jest on połączony z następnym węglem wiązaniem podwójnym. Zarówno grupa karboksylowa jak i nitrylowa mają skłonność do wyciągania elektronów, toteż wiązanie podwójne zostaje bardzo w nie zubożone. Przekłada się to na zwiększenie kwasowości protonów przy końcowym węglu. W tym przypadku skłonność do oddawania tych protonów jest na tyle duża, iż wystarcza bardzo słaba zasada by je oderwać. Gdy to następuje, zapoczątkowana zostaje reakcja łańcuchowa:

Nukleofilowa zasada odrywa protony na końcu, wiązanie podwójne pęka a na zwornikowym węglu w cząsteczce pojawia się silny ładunek ujemny. Taka cząsteczka sama staje się zasadą i atakuje drugą cząsteczkę. Po utworzeniu wiązania w drugiej cząsteczce pęka wiązanie podwójne, powstaje ładunek ujemny i następuje atak na trzecią cząsteczkę... I tak dalej aż utworzy się nam stała masa splątanych długich łańcuchów.

Zasadą zapoczątkowującą reakcję jest zwykle woda ze śladów wilgoci, bądź substancje klejonych powierzchni. Co jednak zachodzi po nasączeniu klejem bawełny?
Bawełna to celuloza, będąca długimi łańcuchami połączonych cząsteczek glukozy, te zaś posiadają grupy hydroksylowe, w łańcuchu cztery wolne. Własności nukleofilowe tych grup w celulozie są wprawdzie słabe, ale wystarczą do inicjowania reakcji. Duża powierzchnia włókien w kłębku w połączeniu z dużą ilością kleju powoduje zapoczątkowanie polimeryzacji o razu dużej masy akrylanów. W miarę powstawania kolejnych łańcuchów reakcja przyspiesza. Ponieważ jest samorzutna, w jej przebiegu wydziela się energia toteż zaklejony kłębek rozgrzewa się.
Czy jednak aż tak bardzo by zapłonąć? Karty charakterystyki klejów zwykle ostrzegają przed egzotermiczną reakcją z bawełną, czasem wspominając o możliwości zapłonu. Nie tak dawno SciFun wykonał własne pomiary, i maksymalna temperatura w dobrze odizolowanym kłębku wyniosła 115 stopni C, w otwartym ponad 80 stopni. To jednak za mało aby doszło do samozapłonu celulozy, bo na to potrzeba 400 stopni, zatem jego zdaniem kłębek został przez autora podpalony.
Moim zdaniem mogło jednak zajść coś trochę innego - kłębek był przecież cały oblany klejem. Wprawdzie temperatura samozapłonu cyjanoakrylanu to prawie 480 stopni[1], ale już temperatura zapłonu opar kleju to 85 stopni. Jest to temperatura w której opary zmieszane z powietrzem zapalają się po zainicjowaniu. A ponieważ opary te w postaci białego dymu pojawiły się nieco wcześniej, przebieg był zapewne taki - kłębek rozgrzał się do takiej temperatury, że wydzielił intensywne opary, było to temperatura w której opary zapalały się w zetknięciu z ogniem. Wystarczyło zapalić zapałkę w pobliżu kłębka a zapalał się nawet bez przykładania ognia, po prostu od zapłonu unoszących się par. Zastanawia mnie czy w takich warunkach wystarczająca mogłaby być iska elektryczności statycznej.

Podobna egzotermiczna reakcja następuje też z wełną i materiałami skórzanymi. Szansę na samozapłon miałaby w sprzyjających warunkach nitroceluloza dla której graniczna temperatura to 160-170 C, a także tłusta surowa bawełna dla której podaje się wartość 120 stopni. Znalazłem też informacje, że silnie rozgrzać może się spoina gdy próbuje się skleić tym plexiglas, co nie jest chyba tak zaskakujące zażywszy że pleksi to polimer akrylowy i powinien zawierać jeszcze ślady polimeryzatorów. Nie wywołuje to zapalenia ale materiał może się nadtopić. Już większe niebezpieczeństwo sprawia schnący pokost - nie raz zdarzało się że szmaty zabrudzone pokostem lub farbami olejnymi zapalały się od szybkiej reakcji utlenienia.

Myślę że warto tu dodać jeszcze jeden ciekawy przykład. Majsterkowicze czasem używają superkleju do uzupełnienia ubytków w przedmiotach, Mieszają wówczas klej z proszkiem do pieczenia czyli wodorowęglanem sodu. Mieszanka rozgrzewa się i puchnie, szybko jednak twardniejąc w lekką ale mocną masę. Jak łatwo się domyśleć, soda jest dobrą zasadą odrywającą protony i wywołującą szybką reakcję polimeryzacji. Równocześnie następuje częściowy jej rozkład, głównie chyba z powodu połączenia z oderwanymi protonami, może też od ciepła. Ponieważ masa szybko twardnieje zamiast pianki tworzy się lekka masa zwierająca mieszankę kleju, stałej, nieprzereagowanej sody i drobnych bąbelków dwutlenku węgla, która dobrze wypełnia ubytek przylegając do porowatych powierzchni.

Zatem prawdopodobnie klej wylany na bawełniany materiał nie wywoła zapłonu, mimo wszystko jednak rozgrzeje się wystarczająco mocno aby poparzyć. Powstające wówczas białe opary są szkodliwe dla płuc.
------
* Opis chemii i nietypowych zastosowań kleju

[1] http://apps.echa.europa.eu/registered/data/dossiers/DISS-9e9bc392-29b8-523e-e044-00144f67d031/AGGR-5815fa25-4c2c-4942-a8ff-6477f4252fb0_DISS-9e9bc392-29b8-523e-e044-00144f67d031.html

środa, 7 listopada 2012

Ostatnio w laboratorium (17.)

Na ostatniej przed świętami pracowni z chemii proekologicznej, analizowaliśmy kawałki tworzyw sztucznych, aby móc poznać z jakim konkretnie tworzywem mieliśmy do czynienia. Kawałkami tymi były: pocięta folia z opakowania loda, pocięte opakowanie kremu (z etykiety wyczytałem "do rąk i do stóp"), kawałki miękkiej rurki, kawałki uszczelki, kawałki niebieskiej zakrętki od butelki wody mineralnej i kawałek zielonego plastiku z jakiegoś opakowania z gwintem.
Jednym ze sposobów rozróżnienia tworzyw, było poznanie ich gęstości metodą flotacyjną - przez sprawdzenie pływalności w różnych roztworach. Najpierw więc dzieliliśmy je na te, które pływały w widzie i te które tonęły; z tych pierwszych na te które pływały z 30% etanolu i te które tonęły, zaś z tych pierwszych sprawdzaliśmy jeszcze pływalność w 58% etanolu. I tutaj kawałeczek zielonego plastiku po wrzuceniu do roztworu opadł na dno, potem zaczął wynurzać się aż wreszcie pozostał swobodnie zawieszony mniej więcej pośrodku.:

Znaczyłoby to, że roztwór miał akurat taką samą gęstość jak ten plastik (ok. 0,88g/ml). Z drugiej strony materiał był nieprzezroczysty i zabarwiony, musiał więc zawierać wypełniacze i pigmenty, które nieco go dociążyły. A skoro tak, to bez nich pływałby.

Inne próby dotyczyły rozpuszczalności lub nie w acetonie a nasam koniec została nam próba spalania. Niektóre materiały można dosyć łatwo rozróżnić po tym jak się palą. Poliolefiny (polietylen, polibutylen) zapalają się łatwo, słabo kopcą, kapią i po zgaszeniu pachną podobnie do świecy ze stearyny. Tak też zachował się nasz kawałek zielonego plastiku:

 PCW zapala się trudno i kopci, gaśnie po wyjęciu z płomienia i wydziela nieprzyjemny, ostry zapach będący głównie wynikiem wydzielania się chlorowodoru. Polistyren pali się łatwo i silnie kopci. Jeszcze nie podsumowałem notatek i nie zrobiłem sprawozdania, więc na razie nie podam co było czym, a sam już dziś nie pamiętam.

A aspekt proekologiczny? Jeśli będziemy wiedzieli z jakiego plastiku są odpady, będziemy wiedzieli co można zakompostować, co przetopić a co wyrzucić na śmietnisko. Nie wiem jedynie czy w sortowniach stosują takie proste metody - ja bym wolał jakiś spektroskop.

piątek, 2 listopada 2012

Modyfikowana ale nie tak

Pojawia się w zupkach chińskich, budyniach, sosach w proszku, jogurtach, kisielkach i wszelkich innych produktach wymagających zagęszczenia; tym jednak co budzi obawy nie jeśli oznaczenie E lecz rozwinięcie nazwy, mówiące o tym że jest to nie zwyczajna skrobia, ale modyfikowana. A modyfikowane coś w jedzeniu, to na pewno jakiś szkodliwy gen - myśli niezorientowany konsument. I myli się całkowicie.

Temat GMO (genetycznie modyfikowane organizmy) budzi dziś dużo kontrowersji. Kwestii tego na ile roszczenia spierających się grup są zasadne, nie będę tutaj rozstrzygał, niech to robią inni. Kontrowersje z tym związane są jednak często przenoszone na całkiem inne produkty i substancje, które jedynie kojarzą się z GMO. Dziś o modyfikacje podejrzewane jest wszystko co bierze się z soi, z lecytyną sojową włącznie. Na podobnej zasadzie dostaje się też modyfikowanej skrobi, której obecność w pożywieniu jest często powodem skarg na producentów. Przykład mamy tutaj - jako produkty GMO wyliczono wszystkie ze skrobią modyfikowaną. Nieco inną wersję znajdziemy na tym blogu - autorka wprawdzie sprawdziła, że chodzi tu o inną modyfikację, ale uważa termin za kamuflaż dla "skrobi modyfikowanej genetycznie" z której tylko i wyłącznie ma się produkować ten zagęstnik. W czym i kto nie ma racji objaśniam poniżej.

Skrobia, chemicznie rzecz ujmując, jest jednym z najpospolitszych naturalnych polimerów, stanowiąc energetyczny zapas dla roślin. Jej długie łańcuchy są zbudowane z połączonych cząsteczek glukozy:
połączonych wiązaniem α-1,4-glikozydowym. Jedna cząsteczka skrobi może się składać z od kilku setek do ponad tysiąca członów glukozowych. Zasadniczo dzieli się na dwie frakcję - amylozę składającą się wyłącznie z pojedynczych, prostych łańcuchów, i amylopektynę, której łańcuchy są w wielu miejscach rozgałęzione.
Ta różnica budowy ma istotne znaczenie dla właściwości - prosta amyloza jest nierozpuszczalna w zimnej wodzie, natomiast rozpuszcza się w gorącej. Amylopektyna częściowo rozpuszcza się w zimnej wodzie, silnie pęczniejąc i odpowiadając za kleistość mokrej skrobi.
Stanowi podstawowy składnik wielu produktów spożywczych i często jest do nich dodawana jako zagęstnik, jednak jej właściwości nie zawsze są odpowiednie. Dlatego poddaje się ją modyfikacjom, zmieniając długość i kształt cząsteczek, lub doczepiając do nich różne grupy, wpływające na zachowanie się w żywności. Jakie są to przemiany?

Najprostsza polega na częściowej hydrolizie, to jest rozdzieleniu długich łańcuchów na części, pod wpływem enzymów, podwyższonej temperatury lub kwasów. Takie kawałki nazywane dekstrynami, mające po kilkanaście członów glukozy, są już rozpuszczalne w wodzie, tworząc lepkie roztwory i zastępując gumę arabską. Dekstryny powstają między innymi podczas wypieku chleba, odpowiadając za właściwości lekko słodkawej, chrupiącej skórki. Dekstryny są też składnikami klejów, jak choćby używany dawniej klej z prażonych kasztanów. Istnieje kilka typów dekstryn, te hydrolizowane kwasami są oznaczane jako E 1400, hydrolizowane enzymatycznie jako E 1405.

Inne modyfikacje polegają na potraktowaniu skrobi kwasami (E 1401) lub zasadami (E1402) które też rozbijają łańcuchy, ale na dłuższe cząsteczki, mające po kilkadziesiąt do stu członów. Te odmiany są już słabo rozpuszczalne w zimnej wodzie. Działając na skrobię utleniaczami, otrzymuje się s. utlenioną lub bieloną zawierającą grupy karboksylowe, zależnie od użytego utleniacza jest to E 1403 dla wody utlenionej, i E 1404 dla chloranu sodu. Tak zmieniona skrobia tworzy miękkie żele podobne do żelatynowych. Wszystkie te odmiany po spożyciu rozkładają się tak samo jak zwykła skrobia, tworząc glukozę.

Inne modyfikacje polegają na podstawieniu grup wodorotlenowych odpowiednimi podstawnikami. Traktując skrobię kwasem fosforowym, można uzyskać produkt częściowo podstawiony resztą fosforanową (E 1410) lub usieciowany (E 1412) lub usieciowany i podstawiony (E 1413). Ta pierwsza odmiana charakteryzuje się niską skłonnością do retrogradacji - procesu powodującego wypychanie wody z żelu skrobiowego i tworzenie zwartych agregatów o krystalicznej strukturze. Zretrogradowana skrobia jest twarda i gorzej trawiona, dla przemysłu spożywczego większe znaczenie ma jednak to, że proces retrogradacji zmienia właściwości produktu, który staje się mniej sprężysty. Odpowiada między innymi za przemiany powodujące czerstwienie pieczywa. Odmiany usieciowane tworzą żele twarde, rozpływające się w wyższych temperaturach, odporne na przemrożenie.
Jak łatwo się domyśleć, w odróżnieniu od poprzednich odmian, skrobia fosforyzowana rozkłada się z wydzieleniem reszt fosforanowych, te zaś mają już pewien wpływ na organizm. Nadmiar fosforu w takiej formie zaburza wchłanianie wapnia, zwiększając skłonność do osteoporozy. Z drugiej strony zawartość reszt fosforanowych w modyfikowanej skrobi nie może przekraczać 0,04% (ograniczenie prawne) a zazwyczaj osiąga 0,01%, trudno zatem aby doznać nadmiaru tylko tą drogą i więcej zaszkodzić może wypicie coca-coli - choć warto uwzględniać i tę ilość wobec całkowitej ilości w pozostałych produktach. Odgórnie ustalono limit zawartości w produktach dla niemowląt na 20 g/kg produktu.

Kolejne modyfikacje polegają na przyłączeniu do skrobi reszt kwasów organicznych. Jeśli potraktować ją bezwodnikiem octowym, otrzymamy skrobię acetylowaną (E 1420) tworzącą miękkie, przezroczyste żele w niskich temperaturach. Ten podstawowy typ, ma różne odmiany, na przykład acetylowana skrobia utleniona (E 1451), acetylowany fosforan skrobiowy (E 1414), czy acetylowany adypinian skrobiowy (E 1422) tworzący żele w warunkach silnie kwaśnych, podobnie do naturalnych pektyn.
Te odmiany rozkładają się z wydzieleniem kwasu octowego, który jest nieszkodliwy, jednak ze względu na możliwe działanie drażniące ustalono limit zawartości w produktach dla niemowląt na maksymalną zawartość 50g/kg produktu[1]

Najbardziej skomplikowaną nazwę ma E 1450 - oktenylobursztynian skrobiowy - o którym zarazem najtrudniej było mi coś znaleźć. Jest to ester w którym do pierścienia glukozy dołączono kwas zawierający dwie grupy karboksylowe i wyglądający jak pochodna kwasu bursztynowego, podstawionego oktenem - stąd zawiła nazwa (podejrzewam że równie dobrze można by go nazwać kwasem 2-acetylodek-7-enowym)


Tak duża grupa organiczna powoduje że skrobia może przylepiać się do tłuszczu na granicy faz woda-tłuszcz, stąd też używa się jej do zagęszczania majonezów, musztard i kremów. Podczas rozkładu w organizmie cała ta grupa odszczepia się i jak się wydaje, jest wydalana z moczem. Znalałem tylko jeden przegląd badań na ten temat [2], w którym nie stwierdzono negatywnych wpływów na  dwa kolejne pokolenia szczurów, których dieta zawierała nawet 30% tej modyfikacji. Jedynym negatywnym wpływem był niedobór magnezu wywołany tak ubogą dietą.
Sole glinowe tego związku są używane w pudrach do ciała i jako stabilizatory w tabletkach.

Kolejną zawiłą modyfikacją jest hydroksypropyloskrobia (E 1440 lub HPS) i jej kombinacje: z fosforanem (E 1442) i z gliceryną( E 1441). Otrzymuje się ją traktując substrat naturalny tlenkiem propylenu - epoksydem z trójkątnym mostkiem tlenowym, który łatwo się otwiera, przyłączając się do innych cząsteczek. Zależnie od stopnia podstawienia otrzymany produkt ma różne właściwości. Odmiany używane w przemyśle spożywczym zawierają do 60% podstawionych grup, tworzą żele o dobrym połysku, wytrzymałe na zamrażanie, stąd niekiedy pokrywa się nimi mrożone owoce aby spowolnić powierzchniowe utlenianie, a ponadto zagęszcza lody i ciasta mrożone. Zwykle też zastępuje się nimi mączkę chleba świętojańskiego. Stanowi też materiał rozpuszczających się w żołądku kapsułek na leki, zastępując używaną wcześniej żelatynę.
Podczas trawienia rozkłada się na glukozę i glikol propylowy - który z kolei utlenia się do nieszkodliwego kwasu pirogronowego lub mlekowego. Mimo to wygląda na to, że może podrażniać jelita, skłaniając je do bardziej intensywnego wydalania. Krótko mówiąc może wywołać rozwolnienie. Potwierdzają to badania - u szczurów które zjadały karmę zawierającą 50% związku pojawiała się biegunka, w innym badaniu pojawiła się przy ilości 30% karmy; w badaniu na ludziach ochotnikach biegunka pojawiała się przy dawce 60 g dziennie. Zarazem nie stwierdzono negatywnych zmian w układzie krążenia, nerwowym i trawiennym u szczurów, psów i świń zjadających ten związek przez okres od kilku do kilkunastu tygodni, podobnie jak u szczurów karmionych nim przez 2 lata, a w pewnym badaniu nie wykazano negatywnych i dziedzicznych zmian u trzech kolejnych pokoleń szczurów karmionych tym związkiem.[3] Zatem właściwie tylko biegunka przy spożyciu dużej ilości, może być uważana za jakiś wpływ zdrowotny.

Ziarna skrobi pszenicznej barwione jodem. Powiększenie ok. 500 razy

Nie takie więc te dodatki straszne, jak by to mogło wynikać z długich nazw. Dla mnie bardziej istotne jest jednak to, gdzie są one stosowane i w jakich ilościach. 30 lat temu śmietana utwardzana mąką byłaby brana za oszustwo, a jednak dziś trafiają się produkty tego typu zagęszczane modyfikowaną skrobią, i w zasadzie nikt nie widzi w tym niczego złego. Skrobia dziś zagęszcza kremy, utwardza wędliny, nabłyszcza warzywa, usztywnia mocno rozpulchnione pieczywo, a nawet zastępuje tłuszcz w produktach dietetycznych, i białko w serze do posypywania pizzy. Jest wypełniaczem w jedzeniu, a sama nie ma zbyt dużej wartości dietetycznej.

Natomiast co ze skrobią GMO? No cóż, cząsteczka skrobi nie posiada własnego DNA, zatem nie ma czegoś takiego jak "skrobia genetycznie modyfikowana" - i to skrobia i to, chemicznie cząsteczki z różnych roślin niczym się między sobą nie różnią. Nie wiem zresztą czym miałyby się różnić w przypadku pochodzenia od roślin, których modyfikacje nie dotyczyły skrobi.
Gdyby zaś materiał początkowy był zanieczyszczony na przykład białkiem roślin modyfikowanych, to wszystkie przemiany którym poddaje się skrobię, a więc traktowanie kwasami, temperaturą, bezwodnikami i innymi upochodniaczami, spowodowałyby jego rozkład, a co za tym idzie unieczynnienie. Ot i cała zagadka.


------
* Od strony technicznej modyfikowanie skrobi wygląda tak

[1] http://www.zusatzstoffe-online.de/zusatzstoffe/313.e1420_acetylierte_st%E4rke.html
[2] http://www.inchem.org/documents/jecfa/jecmono/v17je21.htm
[3] http://www.inchem.org/documents/jecfa/jecmono/v05je70.htm