informacje
wtorek, 14 stycznia 2020
Ostatnio w laboratorium (73.)
Po odpowiednio długiej ekstrakcji, gdy wszystko co mogło zostało już wymyte, ekstrakt odparowuje się a pozostały tłuszcz waży, i tak voila! - mamy zawartość tłuszczu w próbce.
Niedawno w laboratorium robiłem tak z wiórkami kokosowymi, które okazały się tego tłuszczu zawierać całkiem sporo, i przy tej okazji zauważyłem ładny efekt. Gdy ciepłą kolbę z tłuszczem zostawiono na noc, stygnący powoli tłuszcz zestalił się tworząc kryształy. W samej masie wyglądało to jak ziarnista faktura, zupełnie różna od gładkiego, smalcowatego wyglądu stałych tłuszczów jaki zwykle obserwujemy. Z kolei w cienkiej warstwie rozprowadzonej na ściankach, pierzaste kryształy przybrały formę podobną do szronu na zalodzonej szybie.
poniedziałek, 16 grudnia 2019
1921 - Eksplozja w Oppau
Krater po eksplozji |
W niemieckim Oppau (dziś część miasta Ludwigshafen), w latach 20. działał zakład produkujący nawozy sztuczne. Jednym z głównych produktów był nawóz azotowy zawierający azotan amonu zmieszany z siarczanem. Azotan amonu jest jednak substancją niebezpieczną - podobnie jak inne saletry, w podwyższonej temperaturze rozkłada się, działając jak silny utleniacz. Saletra potasowa zmieszana ze związkami organicznymi, lub węglem i siarką, daje różnego typu masy wybuchowe. Bez tego organicznego dodatku nie powstanie na tyle dużo produktów gazowych, aby doszło do wybuchu.
Azotan amonu ma natomiast tę szczególną cechę, że potrafi utlenić sam siebie - w jonie azotanowym azot ma stopień utlenienia +5 zaś w amonowym -3. Oznacza to, że oba jony mogą zareagować wzajem ze sobą, wytwarzając produkty gazowe, głównie azot, tlen, tlenki azotu i wodę. Gwałtownie rozprężające się gazy po reakcji chemicznej, gorące wskutek dużej uwalnianej energii, to właśnie wybuch.
W niskich temperaturach spokojny rozkład azotanu prowadzi do powstania niemal czystego podtlenku azotu, czyli gazu rozweselającego, jest to jedna z metod otrzymywania. Podczas rozkładu wybuchowego, który następuje po przekroczeniu temperatury 420 stopni, ze względu na temperaturę i nadmiar tlenu sporo azotu przechodzi w różnego rodzaju tlenki, w tym tlenek II i dwutlenek w formie początkowo NO2, w niższych temperaturach jako pomarańczowy N2O4. Takie "spalanie" azotu pochłania część ciepła. Trochę więcej energii można by więc uzyskać, gdyby przeprowadzić te tlenki w azot. W tym celu trzeba jednak coś utlenić. W używanym na dużą skalę materiale kruszącym ANFO rolę akceptora tlenu spełnia niewielki, około 5-6%, dodatek oleju napędowego, który pochłania nadmiarowy tlen, sam przy okazji swojego spalania oddając trochę ciepła. Wtedy produktami gazowymi są woda, azot i dwutlenek węgla. Inne mieszaniny wybuchowe oparte na podobnej zasadzie to Amonal zawierająca sproszkowany glin, czy zastępujący dynamit Seismogel, w którym azotan amonu zżelowano azotanem metyloamonowym.
Generalnie więc w podwyższonej temperaturze azotan amonu staje się materiałem wybuchowym i wiele razy już doprowadzał do celowych lub niezamierzonych eksplozji. Ostatnio na przykład Breivik użył bomby z nawozów podczas swojego ataku w Oslo. Bomby azotanowej użyto też w zamachu na Bali w roku 2000. Czysty azotan jest w tym celu rzadko używany, ze względu na małą czułość i higroskopijność. Wybucha albo wskutek podgrzania do odpowiednio wysokiej temperatury, albo wskutek zastosowania inicjującego materiału o wysokiej prędkości spalania. Powstała podczas wybuchu spłonki lub wybuchu małej części masy azotanu fala uderzeniowa wywołuje detonację pozostałej saletry wskutek samej tylko kompresji.
Jednym z najgorszych przypadków takich wybuchów, była właśnie eksplozja w Oppau.
Zakład przechowywał saletrę w dużym budynku magazynowym na jednej kupie, w formie pryzm dochodzących do 20 metrów wysokości. W roku 1921 postanowiono ułatwić sobie zadanie, i nawóz dostarczano do magazynu bezpośrednio z aparatury do suszenia rozpyłowego. Stężony, gorący roztwór rozpylano w rurze, do której doprowadzono suche powietrze. Następowało zastyganie małych kropelek, które jako perełki wysypywały się na podajnik, rozrzucający materiał półkolem pośrodku magazynu. Perełki w momencie wpadania do magazynu były mimo to wciąż jeszcze nieco wilgotne i dosychając ostatecznie sklejały się w masę o twardości betonu, którą trudno było rozbić łopatą a nawet kilofem górniczym. Powstawał tak zwany "bunkier" który po pewnym czasie uniemożliwił dalsze nasypywanie produktu. W sierpniu 1921 podczas wybierania zapasów, w magazynie została półkolista pryzma obejmujący najbardziej stwardniałą część złoża, której nie dało się już wybrać.
Co też zrobić z taką ilością bardzo przecież potrzebnego produktu? A no rozwalić dynamitem.
Na pierwszy rzut oka wydaje się to szaleństwem, jednak zakład produkował nie czysty azotan amonu, lecz zmieszany z siarczanem amonu, siarczanem sodu i różnymi zanieczyszczeniami stałymi. Podczas krystalizacji z roztworu zawierającego podobne proporcje siarczanu i azotanu powstaje sól podwójna tworząca wspólny kryształ, o mniejszej wrażliwości chemicznej. Wcześniejsze próby pokazały, że jeśli ilość saletry amonowej w masie nie jest większa niż 60% to materiał jest dość bezpieczny, produkt składowany w magazynie miał około 50% tego składnika. Wiele razy zresztą już tak robiono, wysadzano góry stwardniałego od wilgoci nawozu, i nic się nie działo. Tym razem jednak stało się.
Co do przyczyn, opinie są różne.
Produkowana masa nie miała stałego składu; w najbardziej stwardniałej warstwie mogła się znaleźć partia bardziej nasycona. Jeśli nawóz zsypywano mocno wilgotny mogło dojść do spłynięcia na dno pryzmy roztworu zawierającego więcej dobrze rozpuszczalnego azotanu. Sami nadzorujący prace niekoniecznie się trzymali reguły "nie więcej niż 50%", w zasadzie podejmowano już wysadzenia brył o składzie bliskim bezpiecznej granicy. Mogło być więc i tak, że inżynierowie wiedzieli, że partia nawozu zawiera dużo więcej azotanu niż powinna, ale mieli nadzieję, że tym razem też się uda. Na dodatek lato 1921 było w Niemczech wyjątkowo suche i gorące - zresztą, w Polsce podobnie, to wtedy zanotowano rekordowo wysoką temperaturę +40 koło Opola - sypki materiał naprawdę dobrze wysechł. W wysokiej temperaturze granulowania i suszenia utrudnione było powstawanie soli podwójnej azotano-siarczanu amonu, raczej powstała mieszanka czystych kryształków. Bezpieczna dotychczas procedura rozbijania twardych brył zaczęła przypominać tańczenie kankana nad przepaścią.
Krater w miejscu magazynu |
Wysadzenie stwardniałej masy odbyło się dokładnie 21 września o godzinie 7:32. Wybuch objął jednak tylko część magazynowanego nawozu - wyparowało około dziesięciu procentów, pozostałe fragmenty zostały rozrzucone dokoła. Wciąż jednak było to około 500-600 ton azotanu, który pokazał swą moc.
Fala uderzeniowa zburzyła większość budynków w okolicy, wywołując zniszczenia do 30 kilometrów wokoło. Grom słyszano aż w Monachium, trzysta kilometrów dalej, zaś wstrząs był wyczuwany w Zurychu. W miejscu magazynu powstał krater o długości 160 i szerokości 90 metrów, głęboki jeszcze na 20. Szybko zapełnił się wodą. W zakładzie przemysłowym i okolicznych miejscowościach zginęło około 560 osób a 6,5 tysiąca straciło dach nad głową. Była to najgorsza katastrofa przemysłowa w historii Niemiec.
ze strony Oppau.info |
-------
* https://ffi-publikasjoner.archive.knowledgearc.net/bitstream/handle/20.500.12242/1259/16-01508.pdf?sequence=1&isAllowed=y
* http://oppau.info/2011/09/14/explosionskatastrophe-1921/
piątek, 11 października 2019
Zrób sobie atrament
Galas to narośl powstająca na liściach dębu, w wyniku żerowania na nich larw drobnego owada. Larwa wytwarza substancje stymulujące rozwój tkanki blaszki liścia w formie kulistej, gąbczastej narośli otaczającej larwę, w której przeżywa zimę aby wiosną, po przemianie w formę dojrzałą, wydostać się i zarażać inne drzewa. Miękka tkanka galasa nasączona jest sokiem zawierającym bardzo wiele kwasu galusowego - prostego kwasu fenolowego, którego bardziej rozbudowane pochodne to taniny, nadające tkankom i owocom dębu gorzki posmak.
Kwas ten może tworzyć z solami żelaza żywo zabarwione związki kompleksowe, które po utlenieniu stają się nierozpuszczalne, co od wieków było wykorzystywane w produkcji inkaustu. Atrament taki dobrze trzymał się papieru i pergaminu. Używany był prawdopodobnie już w starożytności, ale najstarsze zachowane dokumenty nim pisane pochodzą z IV wieku naszej ery. W XIX wieku zaczęły go wypierać atramenty oparte o sztuczne barwniki, aż wreszcie dziś stykamy się właściwie tylko z tuszami w długopisach.
Czasem jednak atramenty galasowe są nadal używane, na przykład jako stosowany w Wielkiej Brytanii Register's Ink, służący do wypełniania i pieczątkowania ważnych dokumentów, na których kolor pisma ma przetrwać bardzo wiele lat.
Aby zrobić atrament, potrzebne są galasy. To zielone kulki o średnicy około centymetra, wiszące na spodniej stronie liści dębowych, czasem kilka ich wisi na jednym, ale zwykle trzeba się jednak nieco naszukać aby zebrać choć garsteczkę. Późną jesienią można je łatwo znaleźć wśród opadłych liści. Galas można po rozcięciu zasuszyć i z takiego później robić roztwór.
Następnie trzeba otrzymać z nich sok. Ja zmiażdżyłem je po prostu w moździerzu, i zalałem małą ilością wody. Powstaje zielonożółty sok, mający tendencję do ciemnienia przy przechowywaniu.
Teraz trzeba połączyć go z roztworem soli żelaza. Dawne przepisy podawały jako składnik "zielony witriol" czyli siarczan żelaza II. Ja użyłem soli Mohra, w której jon żelaza jest stosunkowo odporny na utlenianie do rdzawożółtego żelaza III. Ilość soli odmierzyłem na oko, tak aby powstał rozcieńczony, bezbarwny roztwór.
Po zmieszaniu obu roztworów, mieszanina pociemniała, aż stała się niemal granatowa. Nie jest to jeszcze właściwy atrament. Sól Mohra mimo wszystko zawierała zapewne nieco żelaza III, oba roztwory miały też pewnie nieco rozpuszczonego tlenu. Powstała więc zawiesina ciemno zabarwionego, nierozpuszczalnego kompleksu żelaza III. Już takim roztworem można pisać, dobrze jest jednak zostawić nieco w zamkniętym naczyniu, aby zobaczyć, że po opadnięciu osadu powstaje przezroczysty roztwór. Jeśli pobrać pipetką lub strzykawką klarowną ciecz, to łatwo jest się przekonać, że nabiera ona koloru po rozprowadzeniu, mimo że wcześniej była bezbarwna.
Atrament po odstaniu - górna warstwa ciemnieje od powietrza. |
Jak użyć tak powstałego atramentu? Jeśli ktoś ma pióro ze stalówką, to nie powinno być większych problemów, najwyżej powinien przed użyciem przesączyć atrament, aby drobne cząstki nie zatykały końcówki. Jeśli jednak ktoś, tak jak ja, postanowi spróbować pisać przy pomocy ptasiego pióra, musi je nieco przygotować. Najlepiej jest brać pióra ptaków będące lotkami (pióra na brzegach skrzydeł) są bowiem długie i mają dużą komorę powietrzną. Dawniej chętnie używano do tego piór gęsich, w ostateczności jednak wystarczą też i kacze, wronie, czy kurze. Najwyżej trudniej będzie otrzymać dobre narzędzie. Ja poszukałem po okolicy i wpadło mi w oko pióro perliczki, o ładnym, pasiastym wzorze. Odnośnie dalszego postępowania polecam film:
Ostatecznie więc po namoczeniu przeciągałem jedną z płaskich stron końcówki po papierze, konstruując litery z pociągnięć w tę samą stronę. Krój wyszedł niezgorszy. Początkowo ślad był słabo, lub w ogóle nie widoczny, jednak szybko pod wpływem powietrza następowało utlenienie żelaza i powstanie ciemnego kompleksu, który osadza się na włóknach papieru. Od razu po wyschnięciu próbowałem zmyć litery pod bieżącą wodą, ale nie schodziły.
Atrament naniesiony piórem, patyczkiem do uszu i watką |
Inną opcją było podsypywanie kartki specjalnym drobnym piaskiem, którego suche ziarenka po przyklejeniu się do liter oddzielały zapisaną powierzchnię od kolejnej, obie metody mogły być używane równocześnie. Pamiętam opowiadanie o Sherlocku Holmesie, w którym detektyw dowodził tezy o autorstwie pewnego listu na podstawie specyficznego rodzaju piasku używanego przez piszącego.
Atramentu galasowego można też potencjalnie użyć do farbowania tkanin. Przetestowałem to na ręczniku papierowym, którego kawałek trzy razy nasączałem i pozostawiałem do wyschnięcia. Gdybym miał więcej cierpliwości i powtórzył procedurę jeszcze kilka razy, byłby niemal czarny.
Atrament taki ma ograniczoną trwałość, ze względu na związki organiczne z galasa, w niektórych nowoczesnych formułach dodaje się do niego konserwant, najczęściej fenol lub tymol. Nieźle brudzi palce.
sobota, 28 września 2019
Ostatnio w laboratorium (71.)
Użyłem wąskiej probówki. Roztwór nadmanganianu okazał się lżejszy. Nakraplajac na ściankę doprowadziłem do dwuwarstwowego układu. Obie warstwy reagowały ze sobą, stąd bezbarwna granica faz. Szerokość granicy wynika z szybkości dyfuzji obu substancji - koloru nie widać w obszarze o za niskim stężeniu form barwnych. Z kolei różnice dyfuzji i stężeń molowych w warstwach wpływają na przesuwanie się granicy - w tym przypadku różowa faza wygrywała a granicą przesuwała się do dołu.
Byłoby to więc dobre doświadczenie edukacyjne.