informacje



Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty

sobota, 17 listopada 2012

Co nieco o Jodzie

 Wpis początkowo mający być migawką z tego co też zdarzyło mi się kiedyś w laboratorium nieco mi się poszerzył, dlatego będzie ogólnie o jodzie i jego analityce.Na początek opowiem o pewnej często stosowanej próbie analitycznej.
Dla wykrycia w badanym roztworze jodków, za pomocą klasycznej "próbówkowej" analizy jakościowej, zazwyczaj dodaje się do niego wody chlorowej i wytrząsa z chloroformem. Chloroform nie miesza się z wodą i osiada przy dnie jako odrębna warstewka, która po wytrząśnięciu z roztworem zawierającym jod, zabarwia się na różowo:

W tym przypadku roztwór był dosyć stężony, więc kolor jest bardzo wyraźny. Widać też różnicę między kolorem wodnego i organicznego roztworu jodu. W wodzie, w której rozpuszcza się słabo, daje zabarwienie brunatne, z pomarańczowym odcieniem. Skąd ta różnica?

Aby wyjaśnić takie zachowanie trzeba zacząć od przyczyny fioletowej barwy pierwiastka, widocznej w stanie gazowym. W stanie stały większe grudki przypominają grafit o niebieskawym odcieniu, dopiero w drobnych, prześwitujących ziarnach lub właśnie oparach, widać dobrze intensywny fiolet.
Jod tworzy cząsteczki dwuatomowe, między którymi istnieje wiązanie kowalencyjne. Wiązanie tego typu polega na połączeniu w parę po jednym wolnym elektronie z łączących się pierwiastków i umieszczeniu jej w przestrzeni między atomami. Ta "wiążące para elektronowa" oddziałuje wespół zespół z obydwoma atomami, dlatego jest dla nich "uwspólniona", zaś każdy uzyskuje w ten sposób wrażenie oktetu - najtrwalszej konfiguracji elektronów w otoczeniu. Jednakowoż jeśli opiszemy rzecz metodami mechaniki kwantowej, widzącej elektrony raczej jako rozmyte chmurki aniżeli kulki na orbitach, to rzecz stanie się nieco bardziej zawikłana.
W kwantowym modelu atomu zamiast mknących kulek mamy jak rzekłem chmurkę - a właściwie przestrzeń nazywaną orbitalem. Wiemy że elektron jest w tej przestrzeni, ale z różnym prawdopodobieństwem, co w istocie przekłada się na różne rozłożenie jego ładunku. Wiązanie pomiędzy atomami jodu tworzą zewnętrzne elektrony sigma, których orbitale są kuliste, i przez ich nakładanie się powstaje wspólny orbital molekularny obejmujący całą cząsteczkę z grubsza na kształt piłki do rugby:

Jednak sposobów łączenia się orbitali jest znacznie więcej, każdemu zaś odpowiada nieco inna energia. W tym przypadku najwyższemu rzeczywistemu orbitalowi sigma (HOMO) towarzyszy leżący nad nim najniższy potencjalny orbital (LUMO) nie zapełniony. Poziomy energetyczne tych orbitali leżą na tyle blisko, że stan elektronu może przechodzić z jednej możliwości w drugą, musi jedynie mieć dostarczoną ściśle określoną porcję energii. Na przykład może pochłonąć kwant światła odpowiadający konkretnej barwie.
Jeśli z białego światła, będącego mieszaniną wszystkich kolorów, wyciąć jakiś jeden, to suma reszty będzie widoczna jako kolor przeciwny. W tym przypadku intensywne pochłanianie zieleni, powoduje powstanie koloru fioletowego swobodnych par tego pierwiastka. Nieco inaczej rzecz przedstawia się w roztworach.

Już tu kiedyś pisałem, że w dydaktyce szkolnej opis rozpuszczania przedstawia ten proces tak, jakby zachodził w próżni, w rzeczywistości bowiem rozpuszczalnik zawsze w jakimś stopniu oddziałuje z cząsteczkami rozpuszczanych substancji. Niejednokrotnie cząsteczka zostaje otoczona warstewką silnie przyciągniętych cząsteczek rozpuszczalnika, co nie pozostaje bez wpływu na jej właściwości.
W przypadku Jodu rozpuszczalniki polarne oddziałują na tyle silnie, że tworzą kompleks, przenosząc część ładunku na jod. Poziomy energetyczne orbitali molekularnych rzeczywistego i potencjalnego rozsuwają się, jod zaczyna pochłaniać inną długość fali i zmienia kolor w stronę brunatnej czerwieni. Dlatego w wodzie i acetonie tworzy roztwory o takiej barwie. W rozpuszczalnikach słabiej oddziałujących, jak dichlorometan, jest intensywnie czerwony. W jeszcze słabszych, jak chloroform czy benzen jest różowy, a w najsłabiej oddziałujących jak heksan, tworzy roztwór fioletowy, tak jak w powietrzu. Jest to jeden z najwyraźniejszych przykładów solwatochromizmu.

Barwa skrobi zabarwionej jodem
Tak więc wyjaśniłem już o co chodzi w opisywanej próbie analitycznej. Nie jest ona zbytnio czuła i ma raczej znaczenie historyczne. Jest jednak jeszcze inna próba, bardziej dokładna i nadająca się do wykrywania śladowych ilości - mianowicie reakcja ze skrobią.
Skrobia, jak to już niedawno tłumaczyłem, jest naturalnym polimerem złożonych z połączonych w długie łańcuchy cząsteczek glukozy. Zależnie od typu łańcucha wyróżniamy prostą amylozę i rozgałęzioną amylopektynę - w przypadku tej ostatniej oddziaływania powodują, że łańcuchy te skręcają się w sprężynki.
Jod rozpuszcza się w wodzie bardzo słabo, chyba że obecne będą w niej jony jodkowe - łączy się wówczas w jony trójjodkowe, będące cząsteczkami wydłużonymi. Roztwór taki nazywa się płynem Lugola (natomiast klasyczna jodyna to roztwór w alkoholu). Tak się akurat składa, że rozmiar "sprężynki" amylozy, pasuje do wielkości cząsteczki trójjodkowej, toteż wpasowuje się ona między skręcone zwoje, tworząc dosyć trwały kompleks o intensywnym, granatowym zabarwieniu.

Barwa kompleksu zależy w pewnym stopniu od stężenia jodu - dla bardzo małych, jest granatowy, dla większych staje się brunatny do czerwonego. Barwa jest zauważalna już dla ilości 0,00002 mol/l jodu w roztworze. Tą samą metodą można wykryć jodki - same co prawda nie reagują ze skrobią, ale mogą być przeprowadzone w jod przez utlenienie. Jeśli do badanego roztworu dodamy zawiesinę skrobi i na przykład wodę chlorowa, to część jodków utleni się i powstający kompleks to uwidoczni.
Nie trudno zgadnąć, że skoro możemy skrobią wykryć jod, to i jodem możemy wykryć skrobię - i rzeczywiście, próba jodowa jest używana do sprawdzenia ilości i rozkładu skrobi w roślinach i pożywieniu. Tak można testować na przykład stopień dojrzałości jabłek - młode owoce zawierają głównie skrobię i kwasy owocowe, skąd cierpki smak młodych jabłuszek; w miarę rozwoju skrobia jest zużywana a w jej miejsce pojawia się coraz więcej cukrów, które maskują kwaśny posmak. Po przekrojeniu owocu polewa się powierzchnię płynem Lugola - zależnie od wielkości i rozmieszczenia zabarwienia przypisuje się owocom różną dojrzałość. W ten sposób można też wykryć obecność skrobi (również jej modyfikowanych chemicznie pochodnych, o których pisałem) tam gdzie znaleźć się nie powinna - na przykład przetworach mlecznych co do których producent nie deklaruje dodatków. Opisał to pięknie Stobiński w "Chemii i życiu".
Ale to nie koniec - wiemy że do reakcji potrzebne są na przykład jodki, skrobia i utleniacze, zatem mając te dwa pierwsze, możemy wykryć ten trzeci składnik.
Mogą to być gazy będące silnymi utleniaczami, jak chlor i brom, czy też ozon. Papierek jodoskrobiowy, zawierający jodki i skrobię, po zwilżeniu i przyłożeniu do wylotu próbówki z której jak sądzimy ulatniają się te gazy, pociemnieje. Profesjonalne paski testowe mają często skalę na której można w pewnym zakresie wyznaczać stężenie utleniaczy - w ten sposób sprawdza się na przykład czy ilość chloru w wodzie pitnej i kąpielowej nie przekracza norm.
Mogą to być silne utleniacze w roztworze, na przykład chlorany czy nadtlenek wodoru, tu jednak przy większych ilościach barwa może pojawić się na krótko - wydzielony jod jest dalej utleniony do bezbarwnych jodanów. Mogą to być nawet słabsze utleniacze, jeśli tylko ulegają odpowiedniej reakcji - na przykład azotyny (azotany III), w odróżnieniu od azotanów V. Reakcji z wydzieleniem jodu ulegają też niektóre metale - na przykład kationy miedzi II i żelaza III, będące raczej słabymi utleniaczami - toteż można by zapewne użyć papierków do wykrycia tych metali, ale dla nich znamy inne testy. Tą trójkę powiązaną możliwościami analitycznymi przedstawiłem na grafice:

Tak więc wiemy już jak wykryć jod i co wykryć można za jego pomocą, jest jednak jeszcze jedno zastosowanie jodu w analityce - mianowicie analiza ilościowa za pomocą miareczkowania jodometrycznego.

Cały pomysł polega na prostej zasadzie - pierwiastkowy jod łatwo redukuje się do jodków. Jeśli będziemy miareczkować jego roztwór przy pomocy roztworu reduktora o znanym stężeniu aż do zaniku barwy, to będziemy mogli ze zużytej objętości wyliczyć stężenie analitu, czyli zawartość jodu. Jeśli zaś mamy roztwór substancji reagującej z jodem o nieznanym stężeniu, to możemy dodać do niej znaną ilość jodu tak aby był to nadmiar, i zmiareczkować pozostały jod. wiedząc ile ubyło z pierwotnej ilości dodanego jodu, możemy wyliczyć ile musiało być w roztworze reagującej substancji.
Odwrotny przypadek to sytuacja gdy mamy nieoznaczony roztwór substancji mogącej utlenić jodki do wolnego jodu - dodajemy wówczas znaną ilość jodków i odmiareczkowujemy  jod powstały w reakcji.

Jako reduktora zazwyczaj używa się tiosiarczanu sodu, który reaguje szybko wedle reakcji:
 I3- + 2 S2O32- S4O62- + 3 I-
Co zaś można oznaczać? W sposób bezpośredni siarczyny, siarczki, arsen III, glukozę i kwas askorbinowy, w pośredni wolny chlor, chlorany, azotyny, sole miedzi II i żelaza III.
Tak się akurat składa, że spośród filmów miareczkowań jakie zrobiłem, najwięcej jest miareczkowań jodometrycznych i jeden z nich niedawno udostępniłem. Wykonałem go podczas praktyk w Siedleckim LOŚP, zaś analizowanym roztworem był wzorzec siarczynów:

Jest to właściwie najistotniejsza minuta miareczkowania. Ilość jodu słabnie a wraz z nią odcień roztworu. Gdy roztwór jest już słomkowy dodaję zawiesinę skrobi - dzięki temu łatwiej będzie mi uchwycić punkt końcowy, gdy zanikają ostatnie tony zabarwienia.

Ot, i tyle.

poniedziałek, 8 października 2012

Nietypowe nieorganiczne

Kilka ciekawostek z zakresu chemii nieorganicznej:

Tlenek manganu VII
Jest to najprawdopodobniej jedyny tlenek metalu, którzy w temperaturze pokojowej ma postać ciekłą. Powstaje w reakcji stężonego kwasu siarkowego z nadmanganianem (manganianem VII) potasu. Początkowo z takiej mieszaniny powstaje kwas manganianowy, natychmiast jednak odwadnia się tworząc tlenek, mający postać oleistej, ciemnofioletowej cieczy, krzepnącej w niższych temperaturach.
Jest związkiem nietrwałym, rozkłada się z wydzieleniem tlenu i ozonu. Jako silny utleniacz reaguje ze związkami organicznymi w sposób wybuchowy, stąd też jego sporadyczne powstawanie podczas niektórych syntez może się stać bardzo kłopotliwe.

Czterotlenek osmu
Jest to tlenek metalu łatwo lotny w warunkach normalnych. Ma niemiły zapach i powstaje już pod wpływem powietrza na rozdrobniony metal - stąd zresztą nazwa pierwiastka (gr. Osme - zapach). Jego nietypowość wiąże się też ze stopniem utlenienia +8, najwyższym i bardzo rzadkim. Jeszcze tylko iryd i pluton oraz niektóre lantanowce dają takie związki.
Jest związkiem trującym, w większych stężeniach wywołuje obrzęk płuc. Zarazem jednak okazuje się bardzo przydatny w syntezie organicznej, w tym do hydrolizowania wiązań podwójnych. Rozrywając jedno z wiązań i łącząc się z dwoma atomami węgla, tworzy nietrwałe połączenie pierścieniowe. Po jego rozerwaniu otrzymujemy cis-diol:
Jest to jednak drogi odczynnik, czasem zastępuje się go nadmanganianem ale - jak mi tu podpowiadają w komentarzu - nie jest on tu zbyt skuteczny. Zamiast tego można użyć tlenku osmu w ilości katalitycznej wraz z odpowiednim innym utleniaczem regenerującym tlenek po przereagowaniu, na przykład N-metylo-N-tlenkiem morfoliny (NMO). W mieszaninie z nadjodanem służy do rozszczepiania alkenów na dwie połowy.

Dimolibden
Nietrwała cząsteczka składająca się z dwóch atomów molibdenu, połączonych unikalnym wiązaniem sześciokrotnym - są to zarówno wiązania sigma, powstające z nakładania się orbitali S, wiązania pi z nakładania bocznego orbitali P i wiązania delta z bocznego nakładania się orbitali D. Podobne połączenie otrzymano dla wolframu.
Znane są też związki z wiązaniami pięciokrotnymi i poczwórnymi. Do tych ostatnich należy octan chromu II stosunkowo łatwy do wytworzenia. Tam dwa atomu chromu połączone są wiązaniem czterokrotnym i mostkami skompleksowanych grup karboksylowych.

Pentazol
Niezwykła cząsteczka lokująca się na pograniczu związków organicznych i nieorganicznych. Jest logiczną kontynuacją azoli - związków pierścieniowych zawierających jeden lub więcej atomów azotu w pierścieniu. W tym przypadku pierścień jest pięciokątny i zawiera pięć atomów azotu... Czyli że składa się tylko z azotu





Tylko odpowiednio podstawione pochodne są na tyle trwałe, aby dało się je wyizolować. Teoretycznie przewiduje się możliwość powstania heksazyny, składającej się z sześciu atomów azotu, ale dotychczas nie potwierdzono jej otrzymania

Fluorek tlenu
Definicja tlenków mówi, że są to związki tlenu w których tlen przyjmuje elektrony drugiego pierwiastka, zatem dotyczy związków z pierwiastkami o mniejszej elektroujemności niż tlen, czyli prawie wszystkich. Prawie, bo jeszcze większą elektroujemność ma fluor, w związku z czym jest to jedyny pierwiastek który nie tworzy tlenku, choć łączy się z tlenem.
Diflluorek tlenu ma postać gazu, o strukturze cząsteczki podobnej do wody, bardzo nietrwałej. Jest silnym środkiem fluorującym i jednym z najsilniejszych utleniaczy, z tego też powodu jest trujący

środa, 22 sierpnia 2012

Ukrzyżowana hemoglobina, czyli układ okresowy w Biblii

Prowadząc na pewnym forum dyskusję na temat kreacjonizmu zastanowiłem się, jak szeroko może sięgać temat. Spotkałem się już z takimi, którzy z Biblii wywodzili prawa matematyki i fizyki, czy jednak ktoś sięgnął do Chemii? Proste przeszukanie dało bardzo wiele wyników - otóż okazało się, że Bóg stworzył układ okresowy i opisał to w Biblii...

W dawnych czasach doktryna chrześcijańska uznawała Biblię za Księgę Ksiąg, zawierającą odpowiedzi na wszystkie pytania i absolutnie prawdziwą. Początkowo na podstawie dziwacznych rozumowań, próbowano wywieść z niej wiedzę o wszystkim co jest na świecie, co prowadziło do dziwacznych wniosków - przykładem teorie kosmologiczne.
Kilkakrotnie na określenie Ziemi użyto w Biblii zwrotu "krąg ziemski" co doprowadziło teologów wczesnego średniowiecza do pojęcia, że ziemia jest płaskim okręgiem otoczonym morzami*. Co prawda obwód ziemi policzył już Erastostenes w starożytności a oddalające się statki zanurzały się pod horyzont, ale teologowie wiedzieli swoje. Liczne wzmianki o krańcach ziemi brali za dowód, że ziemia ma krawędź, stwierdzenie świętego Jana w jego Apokalipsie, iż widzi cztery anioły na rogach ziemi, prowadziło do wniosku że ta krawędź ma narożniki. Dopiero przetłumaczenie z arabskiego dzieł starożytnych sprawiło, że około XI wieku zaczęto te sława interpretować odmiennie.
Wzmiankę w księdze Jozuego o wstrzymaniu Słońca na jeden dzień oraz liczne fragmenty o ruchu Słońca i Księżyca po niebie, interpretowano jako dowód słuszności koncepcji geocentrycznej, a częste wzmianki o nieruchomych fundamentach lub filarach Ziemi, brano za dowód nieruchomości Ziemi.

Co jednak badacze Biblii mają do powiedzenia o Chemii? Na początek układ okresowy:
Grupa I i okres I stanowią pierwszy dzień stworzenia. W pierwszym dniu stworzenia Bóg stworzył światło i oddziela je od ciemności. Sód jest w grupie I i pierwiastek ten silnie reaguje z wodą. Gdy sód łaczy się z wodą, to zapala się dając światło. Oceany są nadal pełne chlorku sodu, który przypomina nam o tym, co Bóg uczynił w pierwszym dniu stworzenia. Okres I zawiera wodór, pierwiastek, który jest w Okresowym Ruchu. Oznacza to, że pojawia się w trzech miejscach na raz (wymiennik, donor, i akceptor elektronów). W Księdze Rodzaju 1:02 mówi: "... Duch Boży unosił się nad powierzchnią wód." Bóg Ojciec, Syn Boży i Ducha Święty to trzy odrębne bóstwa w jednym. Zmiana miejsc w okresach wodoru odzwierciedla to, że może być w trzech miejscach w jednym czasie.
            Grupa IV i okres III odzwierciedlają trzeci dzień stworzenia, w którym Bóg stworzył rośliny. Atom węgla znajduje się w grupie IV. Pierwiastek ten znajduje się we całej materii organicznej. Magnez znajduje się w okresie III. Rośliny, zawierają Magnez..
            Grupa V uosabia czwarty dzień stworzenia. W czwartym dniu stworzenia Bóg stworzył wszystkie ciała niebieskie (słońce, księżyc i gwiazdy). Te obiekty albo odbijają lub emitują światło. Grupa V zawiera fosfor, który wydziela światło.
            Grupa VII i VI okres odpowiadają szóstemu dniu Stworzenia. W tym dniu, Bóg stworzył człowieka na swój obraz. Jako ssaki, jemy żywność, która składa się z atomów, a zatem ma elektrony. Akceptujemy elektrony, podobnie jak to robią pierwiastki w grupie VII. Lantanu jest umieszczony w VI okresie. Ma 14 pierwiastków "na jego obraz", które nazywane są lantanowcami. Lantan i lantanowce reprezentować Boga i człowieka. Jesteśmy stworzeni na obraz Boga, podobnie jak lantanowce są stworzone na obraz lantanu.
            Grupa VIII oznacza siódmy dzień tygodnia stworzenia, w którym Bóg odpoczął. Wszystkie elementy w grupy VIII są nieaktywne chemicznie. Są "w stanie spoczynku", tak jak Bóg w siódmym dniu.
            Układ Okresowy Pierwiastków także dokładnie dowodzi  Biblii. W Księdze Rodzaju 3, Biblia mówi, jak Ewa okazała nieposłuszeństwo Bogu i zjadła owoc z Drzewa Wiadomości Dobrego i Złego. Ugryzła owoc za pomocą jej 32 zębów, które mogą być reprezentowane przez 32 grupy układu okresowego. To wszystko pokazuje, jak ograniczona jest nasza ludzka wiedza. Istnieją cztery rodzaje zębów, i cztery rodzaje orbitali (S, P, D i F). Jezus jest w niebie, będącym "orbitalem" dla nas ("elektronów"). Kiedy idziemy do nieba, zajmiemy te "orbitale" i pozostajemy w spoczynku, podobnie jak gazy szlachetne, które są nieaktywne chemicznie, ponieważ wszystkie ich orbitale zostały obsadzone.
            Mateusz w rzdz. 4 opowiada, jak Jezus wybrał dwunastu uczniów do naśladowania Go aby pomagali Mu szerzyć Ewangelię (życie). Dwutlenek węgla, który znajduje się w grupie IV, jest podstawą całego życia; ma dwanaście protonów i neutronów. Dwunastu uczniów stanowi węgiel i jego rolę w rozprzestrzenianiu się życia. Węgiel-uczniowie pomógł szerzyć Ewangelię, nawet po tym jak Jezus wstąpił do nieba, aby przygotować miejsce (orbitale) dla nas.
            Jest oczywiste, że układ okresowy dowodzi Biblii.[1]
 Jak widać, umiejętnie żonglując liczbami, można dowieść wszystkiego, oczywiście nie wiadomo, dlaczego autor wybrał akurat takie okresy i grupy, może poza tym, że mu akurat do czegoś pasowało. Im dalej w gąszcz domysłów, tym jest zabawniej. Siódmego dnia stworzenia Bóg odpoczął i pobłogosławił ten dzień. Jeśli przedstawić siódemkę w układzie dwójkowym, licząc za 0 czas gdy nie było jeszcze jasności, to siódmy dzień zapiszemy jako 111 - co odzwierciedla trójcę świętą. Siódmym pierwiastkiem jest Azot, który ma trzy elektrony walencyjne i tak jak Bóg odpoczywał, tak azot jest mało reaktywny. Gdy Jezus zmartwychwstał, po szóstym dniu uczniowie widzieli go w jasnych szatach - i rzeczywiście, po szóstej grupie jest siódma, gdzie znajduje się chlor, używany do wybielania tkanin.
A teraz następuje argument, który rozbawił mnie najbardziej. Żelazo jest najcięższym pierwiastkiem który może powstać w gwiazdach podczas syntezy, zatem musi ono być podstawą dla innych pierwiastków. Przynosi ono życie (tlen) do naszych komórek przy pomocy hemoglobiny, a co jej cząsteczki: 

Według podręcznika Chemii Organicznej w strukturze hemu jest jak znak + i żelazo jest ukrzyżowane w centrum do czterech atomów azotu tej struktury + hemu. [2]
 A więc żelazo - podstawa układu - jest ukrzyżowane. Należy do grupy VIII która składa się z trzech pierwiastków, więc możemy je zapisać jako 800 co stanowi w gematrii wartość liczbową Omegi. Jezus mówił że jest alfą i omegą, zatem żelazo jest ukrzyżowanym Chrystusem!

Stężenie bzdur jest doprawdy powalające. W zasadzie poza dziwacznymi próbami obrony tezy, że w Biblii wszystko jest zapisane, nie ma tutaj ani krztyny sensu. Przypomina mi to sprawę biblijnej wartości liczby Pi - w pewnym miejscu pisze się, iż dla króla Salomona wykonano kadź mającą dziesięć łokci średnicy i trzydzieści obwodu, co pokazywałoby, że przyjętą wartością Pi było 3. Niektórzy chcą jednak zwiększyć dokładność znikąd biorąc założenie, że grubość ścianki kadzi wynosiła ileśtam centymetrów i wartość przyjętej liczby wynosiła 3,14 i była dokładniejsza od znanej w Egipcie.

Spotkałem się też gdzieś z podobnymi próbami dowodzenia, wywodzącymi się od stwierdzenia "Jesteście solą ziemi" - sól to chlorek sodu, czyli połączenie powietrznego demona (trującego gazu) ze srebrzystym metalem, w wyniku którego oba atomy uzyskują 8 elektronów - tyle ile było błogosławieństw w Kazaniu na Górze. Zatem łączenie się chloru i sodu odzwierciedla łączenie się przeciwnych stron natury ludzkiej w duchową jedność.
Czy jakoś tak.


-------
* Choć trzeba też uczciwie przyznać, że nigdy nie było to elementem nauczania kościoła. Podejrzenia co do płaskości Ziemi zgłaszali niektórzy scholastycy, pozostali powtarzali za starożytnymi że jest kulista a po drugiej stronie nikt nie mieszka. Argumentem za brakiem ludzi na antypodach było twierdzenie dawnych pisarzy, że w miarę zbliżania się do równika upał staje się coraz bardziej nieznośny, więc na równiku jest już tak silny, że nie da się go przekroczyć. Wbrew popularnym dziś opiniom, za czasów Kolumba dyskutowano nie o tym, czy statek spadnie za krawędź Ziemi, tylko czy Ziemia nie jest aby zbyt duża aby dopłynąć do Indii zanim skończą się zapasy. Ameryka nie była w planach.

[1] Luźne tłumaczenie na podstawie  http://periodictable-creation-bible.com/
[2] tamże

sobota, 18 sierpnia 2012

Smocza krew

Nie miałem ostatnio zbyt dużo okazji aby pisać, stąd trochę zaległości na blogu. Aby się rozruszać skrobnę dziś notkę na temat ciekawego związku chemicznego - kompleksu, z powodu intensywnie czerwonej barwy nazywanego smoczą krwią. A przy okazji będzie też coś niecoś o tym dlaczego musztarda jest ostra, z czego robi się sztuczną krew i jaki ma to związek z chorobami płuc.

Chodzi tu po prostu o tiocyjanian żelaza III. Cyjanki i ich związki już omawiałem, żelazocyjanki też, więc będzie to w sumie trzeci wpis krążący wokół prostych nieorganicznych pseudohalogenów.
W anionie cyjankowym, jak wiadomo, mamy do czynienia z  węglem i azotem połączonymi silnym wiązaniem potrójnym. Na węglu pozostaje możliwość wytworzenia jednego wiązania chemicznego, zaś na azocie wolna para elektronowa umożliwia tworzenie związków kompleksowych.
Natomiast w tiocyjanianach do jonu dołączona została siarka, co skutkuje dwiema możliwymi strukturami elektronowymi:
Podobny związek może tworzyć tlen, są to cyjaniany i izocyjaniany.
Najprostszy sposób otrzymania tiocyjanianów to stapianie cyjanków z siarką, lub reakcja ich roztworów z tiosiarczanem sodu. Tak też postąpił Buchholz w 1798 roku. Wkrótce też stwierdzono że ten nowy związek w połączeniu z solami żelaza daje połączenie o intensywnie czerwonym kolorze, toteż przez analogię do cyjanków, nazwanych od koloru błękitu pruskiego, nowy związek nazwano rodankiem (od greckiego rhodon - czyli róża). W warunkach kwaśnych tworzy łatwo lotny tiocyjan, zaliczany do grupy pseudohalogenów - ma bowiem właściwości podobne do fluorowców: tworzy aniony jednoujemne, tworzy dimery jak Cl2 [tiocyjanogen (SCN)2] , jest lotny, po rozpuszczeniu w wodzie daje kwas, z metalami ciężkimi i srebrem daje nierozpuszczalne osady, roztwarzające się w nadmiarze odczynnika, w solach tworzy strukturę krystaliczną regularną. W zasadzie najbardziej jest podobny do jodu.

A jak rzecz się ma z tytułowym związkiem? Oczywiście jony żelaza tworzą z jonami tiocyjanianowymi sole, rzecz jest jednak bardziej skomplikowana jeśli zauważyć, że reakcję przeprowadza się w wodzie. Sposób rozpisywania dysocjacji soli, jakiego uczą w szkołach, jest bowiem dosyć mocno uproszczony - sole w takim zapisie rozpadają się na wolne jony tak, jakby rzecz zachodziła w próżni.
FeCl3 + → Fe3+  + 3 Cl
W rzeczywistości czynnikiem wywołującym dysocjację jest woda, która oddziałując na sieć krystaliczną związku prowokuje jej pękanie. Cząsteczki wody, choć elektrycznie obojętne, mają jednak ładunek rozłożony nierównomiernie stając się dipolem z nieco bardziej ujemnym tlenem i nieco bardziej dodatnimi wodorami. Skoro tak, to mogą być przyciągane jednym lub drugim końcem przez posiadające ładunek kationy lub aniony, w efekcie jon zostaje szczelnie otoczony przez 4-8 cząsteczek wody

Ponieważ ładunek kationu nadal występuje, a tylko rozłożył się na większą powierzchnię, do tej warstewki mogą przyłączać się kolejne, coraz bardziej nietrwałe i ruchliwe, aż do 4-5 warstw nazywanych łącznie otoczką solwatacyjną. W przypadku kationów żelaza połączenie z najbliższymi cząsteczkami wody przybiera formę kompleksu, zaś przenoszenie ładunku między cząsteczkami rozpuszczalnika i kationu skutkuje pomarańczową barwą roztworu *. Co to zaś ma do rodanku żelaza?
Gdy zmieszamy związek żelaza III z solą tiocyjanianową, kolejne aniony zastępują cząsteczki zsolwatowanej wody, tworząc  skomplikowane kompleksy o barwie znacznie bardziej intensywnej, głównie Fe[(SCN)(H2O)5] 2+ i Fe[(SCN)3(H2O)3 ] grupujące się w wielocząsteczkowe agregaty.
Już dla niedużych stężeń roztwór przybiera kolor świeżej krwi:
Stąd zwyczajowa nazwa. Zresztą używa się takich roztworów (po dodaniu zagęstników) do produkcji sztucznej krwi o dużej trwałości. Barwa jest zauważalna jeszcze przy stężeniu 0,00001 % stąd jej wykorzystanie do bardzo czułego oznaczania obecności żelaza

Tiocyjaniany występują w naturze stosunkowo pospolicie. Jak to już opisywałem przy cyjankach, powstają w organizmie jako produkt naturalnej detoksykacji cyjanków, będąc od nich blisko 100 razy mniej toksyczne. Już w 1824 roku stwierdzono jego obecność w ślinie, zauważając że zmieszana z solami żelaza daje w kwaśnym środowisku różowe zabarwienie. Dosyć duże ilości tiocyjanianów zawierają rośliny z rodziny kapustowatych (dawniej Krzyżowe), a więc kapusta, gorczyca, rzeżucha, rzodkiewnik, rzodkiew, chrzan, wasabi i wiele innych, stanowiąc składnik olejków nadających im ostry, piekący smak. Produkowane przez nie glikozydy tiocyjanogenne głównie synigryna i sinalbina pod wpływem enzymów rozkładają się z wydzieleniem izotiocyjanianu allilu (CH2CHCH2NCS), nazywanego olejkiem gorczycowym, o bardziej intensywnym smaku. Rozkład zachodzi po uszkodzeniu rośliny co wraz z właściwościami drażniącymi wskazuje, że związki te są obroną przed roślinożercami. Powstają też podczas przetwarzania roślin, podpowiadając za smak musztardy, tartego chrzanu i kaparów. Mają też wyraźne właściwości przeciwbakteryjne i owadobójcze - olejek gorczycowy może być używane jako insektycyd.

Kwestia właściwości bakteriobójczych izotiocyjanianu jest ciekawa, gdyż mechanizm ten jest wykorzystywany przez zwierzęta. Aniony SCN- wydzielane przez błony śluzowe dróg oddechowych, pod wpływem enzymu laktoperoksydazy, łączą się z nadtlenkami powstającymi jako uboczny skutek oddychania, tworząc hypotiocyjanian (OSCN) który atakuje bakterie prowadząc do ich śmierci. Równocześnie nie atakuje własnych komórek organizmu zwierzęcego, w przeciwieństwie do nadtlenków mających podobne właściwości. Hypotiocyjanian, wraz z lizozymem stanowi podstawowy czynnik broniący błony śluzowe przez zakażeniami, toteż występuje także w łzach, ślinie, wydzielinie z nosa i mleku. Największe poziomy tego związku stwierdzono w tzw. "siarze" - pierwszych porcjach mleka matki, pojawiających się niedługo po porodzie, której składniki mają zastępować niedojrzałą obronę układu pokarmowego dziecka. Z tego powodu mleko matki i mleko krowie dosłownie prosto z sutka, jest w zasadzie sterylne.
Jeśli u kogoś system ten szwankuje, staje się podatny na zakażenia płuc - takimi osobami są na przykład chorzy na mukowiscydozę. Genetyczne zmiany powodujące wydzielanie nadmiernej ilości gęstego śluzu, wywołują także zaburzenie mechanizmu izotiocyjanianowego, stąd częste zakażenia gronkowcem złocistym i innymi chorobami. Te zaburzenia może łagodzić suplementacja izotiocyjanianu i laktoperoksydazy. Nie znalazłem natomiast nic o tym, czy podobne złagodzenie braku odporności może dawać dieta bogata w rodanki.

Oprócz tych pozytywnych skutków, powodujących że rośliny zawierające rodanki powinny być spożywane, istnieje też pewien skutek negatywny. Tiocyjanian jest na tyle podobny do jodu, że organizm może pomylić obie te substancje. Gdy w diecie pojawia się zbyt dużo rodanków, są one wychwytywane przez tarczycę. Gdy tarczyca uzna że jest odpowiednio nasycona, przestaje wchłaniać jod. Jednak z rodanków nie da się wytworzyć hormonów tarczycowych więc w organizmie pojawia się niedobór, rekompensowany przez powiększenie organu. Jeśli więc u jakiejś osoby już zachodziła niedoczynność tarczycy, albo też jej dieta była uboga w jod, to zjadanie dużej ilości kapusty, gorczycy czy rzodkiewki może u niej spowodować powstanie wola. O produktach mających takie działanie mówi się, że są wolotwórcze.

Na koniec powrócę jeszcze do głównego tematu posta - do smoczej krwi. Reakcja powstawania kompleksu jest na tyle czuła, że używa się jej w analityce. Jedną z metod analizy strąceniowej jest oznaczanie chlorków metodą Volharda - do roztworu o nieznanym stężeniu chlorków dodaje się nadmiar soli srebra. Pozostała nie strącona ilość srebra jest odmiareczkowana przy pomocy rodanku amonu wobec dodatku soli żelaza. Dopóki w roztworze jest jeszcze srebro, tworzy z rodankiem biały osad. Gdy wytrąci się całe, kolejne porcje odczynnika reagują z żelazem dając nasz kompleks o wyraźnym zabarwieniu. Odejmując odmiareczkowany nadmiar od całkowitej ilości srebra w dodanym na początku roztworze, otrzymujemy ilość chlorków w roztworze badanym.

Podczas pierwszych lekcji analityki, gdzie omawialiśmy między innymi tą reakcję, dokonałem przypadkowego odkrycia - kropla roztworu barwnika, kapnięta na kartkę papieru zeszytowego, odbarwiła się całkowicie w ciągu kilku sekund. Zaciekawiony wydarłem z zeszytu pasek papieru i wrzuciłem do próbówki pełnej roztworu (nie tej ze zdjęcia) stwierdzając że kilka centymetrów kwadratowych kartki wystarczy aby odbarwić ok 10 ml roztworu. Nie bardzo wiedziałem jednak na czym polega reakcja. Albo zachodziła adsorpcja barwnika przez włókna papieru lub drobinki wypełniacza - co mogłem odrzucić, bo papier się nie barwił. Mogło być też, że wspomniane agregaty cząstek kompleksu ulegały rozbiciu po adsorpcji na papierze i na tyle osłabła ich barwa, że przestała być widoczna - co jednak odrzuciłem, bo reakcja zachodziła też w wodzie w której moczył się papier. Musiała być to zatem reakcja z czymś rozpuszczalnym. Początkowo obstawiałem, że może być to klej użyty do wzmocnienia masy papierowej, zważywszy że używa się w tym celu głównie dekstryn podobnych co skrobii, a skrobia może kompleksować jod, do którego rodanki są bardzo podobne. Inną możliwością było natomiast, że żelazo zawarte w kompleksie zostało przez coś zredukowane, dając nietrwały i bezbarwny kompleks rodanku żelaza II. Aby to sprawdzić na kolejnych zajęciach kapnąłem kroplę wody chlorowej na to miejsce zeszytu, gdzie wcześniej robiłem próby z kompleksem, i na powrót pojawiło się słabe, różowe zabarwienie - co mogłoby potwierdzać teorię, choć woda chlorowa jako agresywny odczynnik mogla oddziaływać też na kompleks rodanko-dekstrynowy. Niestety nie miałem jak dotąd okazji aby tę kwestię dokładniej przebadać, choć jak teraz sądzę czynnikiem sprawczym jest tutaj ditionian, dodawany jako reduktor do masy papierowej aby wolniej żółkła.
-------
* żeby nie wdawać się w poboczne wątki - pomarańczowy kolor to wynik kompleksów częściowo zhydrolizowanych, zamiast jednej-trzech cząsteczek wody zawierających aniony OH-, pełny akwajon jest słabo liliowy lub bezbarwny co można zauważyć w roztworach silnie kwaśnych gdzie hydroliza zostaje odwrócona - więcej na tej stronie.
Nieco informacji o związku:
http://www.md-institute.com/cms/ressorts/hygiene-antiseptik/Anorganische-Thiocyanate.pdf

sobota, 5 maja 2012

Poison Story (3.) - Bawełniana wdowa


- Powinieneś się ubezpieczyć. Tak na wszelki wypadek.
- O co ci chodzi, dlaczego ciągle trujesz mi tym głowę? - mógłby gniewnie odpowiedzieć żonie James Robinson.
- Nigdy nic nie wiadomo...
Małżeństwo Robinsonów nie należało do specjalnie udanych. Pierwotnie James zatrudnił jako gosposię-opiekunkę, niejaką Marry Ann Ward, niedawną wdowę, która oprócz rozmaitych spraw miała jedynie opiekować się dziećmi i choć jako doświadczona pielęgniarka wywiązywała się z tego zadania znakomicie, chłopiec zachorował i zmarł na gorączkę żołądkową. Po tej tragedii zbliżyli się do siebie. Zbliżyli się tak dobrze że zaszła w ciążę i na stałe zamieszkała z panem Robinsonem. Nawet na krótko przeprowadziła się do nich matka gosposi, niestety zmarła po kilku dniach na dolegliwości żołądkowe. Nie skończyło to łańcucha tragedii - w ciągu trzech tygodni kwietnia odeszła dwójka dzieci Robinsona i córka Marry Ann z poprzedniego małżeństwa. Być może te wszystkie nieszczęścia zbliżyły ich na tyle, że po ledwie pół roku 11 sierpnia 1867 roku, Marry Ann z domu Robson, poślubiła Jamesa w kościele św. Michała w Sutherland, w północnej Szkocji.
Kilka miesięcy później urodziła się im córka, Maria Izabela, ale niestety, jak wszyscy z jej rodziny, jako bardzo chorowite dziecko zmarła mając ledwie pięć miesięcy. Wtedy też Ann zaczęła nalegać na męża, aby ubezpieczył się na życie. Bo przecież nigdy nic nie wiadomo. A cóż pocznie bez niego, sama, biedna.
Najwyraźniej jednak pani Robinson nie była wzorową żoną, często przepadała na długo w mieście wracając o dziwnych porach, często prosiła o małe sumy na różne sprawunki. Wreszcie dowiedział się, że ma długi na sześćdziesiąt funtów i że zabrała mu pięćdziesiąt umieszczając w banku, a na koniec, że posyła dzieci do lombardu, zastawiając biżuterię. O nie, tego już znieść nie mógł. Nie zważając na względy towarzyskie porzucił ją pod koniec roku.
Biedna Marry została na bruku. Jej znajoma, Margaret, sprowadza ją do domu brata Fryderyka Cottona, który niedawno został wdowcem. Niestety już wkrótce dwójka jego dzieci umiera na dolegliwości żołądkowe. Niedługo potem gorączka jelitowa wykańcza uczynną Margareth, zaś Marry tak skutecznie pociesza jej brata, że zachodzi z nim w ciążę. Wkrótce ożenili się w połowie września 1870 roku, i przeprowadzili do niego w Walbottle; Marry nie powiedziała mu że jeszcze nie rozwiodła się z poprzednim mężem. Wkrótce poznaje byłego kochanka Józefa Nattrassa i odnawia związek na tyle, że ten się do niej sprowadza. Pan Cotton nie robi obiekcji, jako że niedługo przedtem umiera na wrzody, zostawiwszy spadek żonie i dzieciom. Dzieci długo się nim nie cieszyły, gdyż zarówno sierota po ojcu jak i świeżo narodzony Fryderyk Junior, umierają wskutek kolki. Sam Nattrass umiera po kilku miesiącach wskutek nagłych boleści żołądkowych, pozostawiwszy spadek kochance.
Mając wikt i dom zatrudnia się jako pielęgniarka u Thomasa Rileya, funkcjonariusza parafii. Wówczas dołącza do niej ostatni żyjący syn Karol. Matka chce umieścić go w przytułku ale musiałaby wówczas mu towarzyszyć. Nie zrażona mówi, że chłopiec jest chorowity i szybko umrze, jak wszyscy Cottonowie, gdy zaś przepowiednia spełnia się po zaledwie pięciu dniach, Riley nabiera podejrzeń. Zwłaszcza, że zaraz po jego śmierci, Marry udała się do ubezpieczyciela po wypłatę ubezpieczenia które wzięła na życie syna. Tak na wszelki wypadek.
Jednak czy stateczna wdowa mogłaby zamordować syna aby jej nie przeszkadzał? Koroner nie daje wiary podejrzeniom Ridleya, zwłaszcza gdy Marry stwierdza że niedawno odrzuciła jego zaloty. Śmierć chłopca zostaje uznana za naturalną i zapewne na tym by się skończyło, gdyby nie dziennikarze, którzy popytali o nią w różnych miastach i ujawnili jej niezwykłą historię.

Marry Ann nie miała szczęśliwego życia. Urodzona w 1832 roku w Moorsley, wioseczce wchłoniętej potem przez Sutherland, wychowywała się w Durham, gdzie jej ojciec górnik przeniósł się za pracą. Gdy miała 14 lat ojciec ginie w kopalni, zaś matka znajduje sobie nowego męża. Marry nie lubi ojczyma, który osładza jej żale pieniędzmi i prezentami. Aby uniezależnić się, Ann szkoli się na pielęgniarkę i odchodzi z domu. Mając dwadzieścia lat żeni się z górnikiem Williamem Mowbray'em, przenosząc się do Plymouth . Ma z nim pięcioro dzieci, lecz czwórka umiera na dolegliwości żołądkowe. Przenoszą się do wschodniej Anglii gdzie mają jeszcze trójkę dzieci, te umierają jedno po drugim. Mąż umiera na gorączkę żołądkową w styczniu 1865 roku, zostawiając jej w spadku 35 funtów - odpowiednik sześciu miesięcznych pensji robotnika. Wkrótce umiera jej kolejna córka. Marry przenosi się do Seaham, gdzie jako pielęgniarka poznaje George'a Warda, z którym żeni się w sierpniu 1865 roku. Po niecałym roku, po długiej chorobie związanej z problemami gastrycznymi, Ward umiera, zostawiając żonie spadek. Teraz tylko dodać matkę, piątkę dzieci trzeciego męża, uczynną przyjaciółkę, czwartego nielegalnego męża i jego dzieci i wychodzi nam aż zastanawiający łańcuch ciągłych śmierci.[1]
Czy stateczna wdowa, troskliwa pielęgniarka, mogła być wyrafinowaną morderczynią? Wszystko na to wskazywało, gdy zaś policja zbadała próbki ciała Karola i wykryła w nich duże dawki arsenu, Marry Ann Cotton została w roku 1873 aresztowana pod zarzutem otrucia 21 osób.

Arsen to pierwiastek chemiczny na 33 miejscu w układzie okresowym, należący do grupy półmetali - choć bowiem ma wyraźny metaliczny połysk, daleko mu do takich substancji jak miedź czy żelazo. Słabo przewodzi prąd, ma liczne odmiany alotropowe w niektórych formach zbliżając się do leżącego nad nim fosforu. Pewne związki były już znane w starożytności grecki lekarz Dioskurides, żyjący w I w. n.e. wymienia aurypigment jako jeden z leków mineralnych, zauważając że jest silnie trujący. Prawdopodobnie jednak dopiero Albertus Magnus w jednym z dzieł alchemicznych stwierdził, że wytapiany z nich metal choć jest podobny do znanego już bizmutu, nie jest nim. Już w VIII wieku arabski alchemik Jabir ibn Hayyān zwany Geberem, opisał biały proszek otrzymany przy ogrzewaniu pewnego minerału. Był to słynny arszenik.
 
Tlenek arsenu III

Arszenik to nic innego jak tlenek arsenu III As2O3,  mający postać białego, amfoterycznego proszku, lotnego w podwyższonej temperaturze z wydzieleniem oparów o czosnkowym zapachu. Proszek ten rozpuszcza się w wodzie, dając lekko kwaśny roztwór pozbawiony wyraźnego smaku, z którego po pewnym czasie może się wytrącać kwas arsenowy będący produktem hydrolizy. Dla potencjalnych trucicieli były to cenne właściwości, gdyż w zatrutym winie lub jedzeniu nie dawało się wyczuć jakiegoś charakterystycznego posmaku, w odróżnieniu od organicznych alkaloidów, zwykle gorzkich lub cierpkich. Słynna strychnina ma smak tak wybitnie gorzki, że przez pewien czas używano go jako odnośnika w skali goryczy. Nic więc dziwnego, że szybko przystosowano go do tego celu.

Pierwsze wzmianki o truciu arszenikiem znajdujemy w średniowieczu, aczkolwiek warto zauważyć że był już od dawna znany w medycynie chińskiej.Do najbardziej znanych trucicieli używających arszeniku, należeli Borgiowie - wpływowy włoski ród. Dwóch z nich zostało niezbyt chlubnymi papieżami. Wprawdzie za życia nie udowodniono im morderstw, a i historycy uważają ich legendę za mocno przesadzoną, jednak wielu ich politycznych przeciwników ginęło w bardzo wygodnym czasie. Arszenik nazywano wówczas żartobliwie "proszkiem sukcesji" lub "przyjacielem spadkobierców".
Inną trucicielką była Giulia Toffana, twórczyni trucizny aqua tofana, będącej mieszanką arszeniku i muchy hiszpańskiej. Giulia założyła dobrze prosperujący interes, w ramach którego sprzedawała truciznę żonom, pragnącym pozbyć się mężów, instruując co do wykorzystania. Aresztowana i stracona w 1659 roku, sama przyznawała że w ciągu blisko 20 lat przy jej pomocy zamordowano 600 osób, jednak trudno zweryfikować wyznania wyciągnięte z niej torturami. W podobnym czasie o otrucie Barbary Radziwiłłówny oskarżano inną Włoszkę, królową Bonę. Oskarżenia były raczej nie popartymi dowodami plotkami. Na ironię losu Bona zginęła otruta gdy powróciła do Włoch.
Istnieją liczne opowieści na temat wymyślnych sposobów trucia. Lotność arszeniku wykorzystywano nasączając nim knoty świec - podczas palenia się, świeca wydzielała trujący opar - w ten sposób zginąć miał Klemens VII. Dodawano go do wina i wody. Posypywano nim potrawy tak, aby porcje na brzegu pozostawały nie zatrute, dzięki czemu degustatorzy mogli nie wykryć trucizny. Wsypywano go do rękawiczek, nasączano koszule i karty książek Ostatecznie jednak zawsze objawy były zbliżone do wywoływanych przez nieświeże jedzenie, bądź cholerę, stąd nawet nagłość zgonu nie była wystarczająca do postawienia diagnozy. Trzeba wiedzieć że jakość jedzenia w tamtych czasach nie była specjalnie wysoka - w erze przedlodówkowej jedzenie należało konserwować, solić, peklować lub suszyć aby się nie psuło a i tak powszechną praktyką było zalecane jeszcze w starych książkach kucharskich wystawienie mięs na dwór "aby skruszało". Obowiązująca teoria miazmatów, to jest oparów chorobotwórczych raczej nie sprzyjała poprawie stanu wód, stąd cholera i czerwonka były w miastach na porządku dziennym. Szczególnie jasno pokazało się to w przypadku masowego zatrucia w Bradford.
Gdy w 1858 roku wiele osób w jednej dzielnicy doznało dolegliwości żołądkowych a niektóre zmarły, sądzono że to kolejna fala zarazy. Dopiero skrupulatne śledztwo doprowadziło władze do pewnego pokątnego fabrykanta cukierków. Niejaki William Hadaker sprzedawał na targu cukierki tzw "Humbugs" własnej produkcji, były to jak można osądzić karmelki z topionego cukru z dodatkiem gumy arabskiej i mięty. Aby oszczędzić na materiale "chrzcił" cukier kredą, gipsem i czym popadnie. Wypełniacze brał od aptekarza, któremu zawsze pozostawało na zbyciu coś z produkcji pigułek. Pewnego razu doszło jednak do pomyłki i aptekarz sprzedał mu beczułkę mającą zawierać magnezję, w rzeczywistości wypełnioną 13 funtami arszeniku. Fabrykant sporządził z tego 40 funtów czyli około 2000 cukierków. Każdy zawierał podwójną dawkę śmiertelną. W efekcie w ciągu kilku dni zachorowało ponad 200 osób, z czego około 20 zmarło. Niemal identyczny przypadek zdarzył się we Francji w 1951 roku - w wyniku pomyłki laboranta którzy wziął nie tą beczułkę, na rynek trafiła partia pudru dziecięcego Baumol, z arszenikiem zamiast tlenku cynku. Zanim zorientowano się w sytuacji zmarło 90 niemowląt.

Jak to się jednak dzieje, że ta substancja ma aż takie silne, szczególne właściwości trujące, sprawiające że wystarczy porcja wielkości ziarenka grochu, aby zabić dorosłego człowieka?

Arsen należy do metali ciężkich, i jako taki chętnie tworzy połączenia z siarką - ta zaś jest ważnym składnikiem białek, enzymów i hormonów. Mostki siarczkowe między sąsiadującymi cząsteczkami stanowią jedną z przyczyn układania się długich łańcuchów polipeptydowych w takiej a nie innej konformacji, co przekłada się na właściwości. Przykład tego podawałem w poprzednim odcinku na temat cyjanków, gdzie mechanizm odtruwający rodanazy wiązał się z obecnością wolnej siarki w cząsteczce. Podłączenie się trójwartościowego arsenu do tych atomów siarki rozrywa mostki siarczkowe i blokuje aktywne grupy, tym samym hamując aktywność enzymu.
Przykładem jest pirofosforan tiaminy (PPT) - jest to kofaktor a więc cząsteczka wspomagająca w wielu enzymach i stanowi biologicznie czynną formę witaminy B1. Takim enzymem w którym pełni ważną rolę jest transacetylaza dihydrolipoilu, stanowiąca część złożonego układu kompleksu dehydrogenazy pirogronianowej. Bierze udział w przekształceniu pirogronianu powstającego z rozszczepienia cząsteczki glukozy w acetylokoenzym A, który następnie wejdzie do cyklu Krebsa. Cykl Krebsa ma za zadanie wytworzyć komórkom całą energię potrzebną do życia, dlatego zablokowanie łańcucha reakcji w tak newralgicznym miejscu skutkuje szybką śmiercią komórki. 
Właściwa zachodząca reakcja polega na przekazaniu grupy acetylowej z PPT na kwas liponowy, zawierający pierścień z wiązaniem dwusiarczkowym, skąd zostaje przekazana koenzymowi A, tworząc acetylokoenzym A. Arszenik tworzy połączenie siarczkowe z dwiema grupami sulfhydrylowymi kofaktora, uniemożliwiając jego działanie:

Oprócz wymienionego blokowanych może być kilkadziesiąt innych enzymów. Arsen V, rzadziej spotykany, jest mniej szkodliwy. Jego działanie opiera się głównie na zastępowaniu fosforu w takich cząsteczkach jak ATP czy DNA, uniemożliwiając przenoszenie energii.

Zanim jednak arsen dostanie się do wnętrza komórki zaczyna łączyć się z innymi zawierającymi siarkę białkami strukturalnymi, głównie z keratyną tworzącą włosy i paznokcie. Dlatego też badanie włosów jest uważane za dobry sposób diagnozowania przewlekłego zatrucia arsenem, również przebytego. W przypadku paznokci odkładające się w nich połączenia arseno-keratynowe powodują miejscową zmianę zabarwienia w postaci białych lub szarych pasów w poprzek paznokcia na całej jego szerokości, które przesuwają się wraz ze wzrostem paznokcia aż po pewnym czasie znajdą się na końcu skąd można je obciąć - są to tak zwane linie Meesa. Często paznokieć jest w tym miejscu kruchy i podatny na pękanie.

Nie należy mylić tych linii z pojawiającymi się niekiedy białymi plamkami lub kreseczkami na paznokciu, mającymi postać punktową i pojawiającymi się nie na wszystkich paznokciach. Jest to tak zwana leukonychia, związana z mechanicznym podrażnieniem macierzy paznokciowej. Czasem wystarczy przyciąć sobie palec, stuknąć się poniżej paznokcia bądź też zaczepić o coś twardego i już po paru dniach pojawia się biała plamka. Wbrew powszechnej opinii nie jest to objaw niedoboru wapnia czy witamin. Istnieje wprawdzie możliwość podobnego objawu przy marskości wątroby czy zatruć chemikaliami, ale wówczas paznokcie po prostu zaczynają całe rosnąć białe. Istnieją jeszcze inne podobne przypadłości z którymi można się pomylić, jak nieruchome pasma pod paznokciem - linie Muehrckego - czy poprzeczne załamania płytki - linie Beau'a - wywołane innymi schorzeniami.

Arsen łatwo wchłania się zarówno wziewnie jak i z przewodu pokarmowego. Spożyty w dawce ostrej wywołuje najpierw objawy żołądkowe - bóle brzucha, wymioty, odwadniające biegunki, zapalenie skóry, podrażnienie płuc. Później, gdy chory jest już osłabiony pojawiają się objawy ze strony układu krążenia - wzmożona przepuszczalność naczyń, uogólniony obrzęk, spadek ciśnienia. Pojawiają się krwawe biegunki, często z oderwaniem nabłonka jelitowego, kłębuszkowe zapalenie nerek,  zmiany skórne, drgawki, encefalopatia, zaburzenia widzenia. Śmierć może nastąpić w wyniku odwodnienia lub zatrzymania pracy serca lub porażenia ośrodka oddechowego. W skrajnych przypadkach duża dawka zabija w ciągu kilku godzin. Dawka śmiertelna to 1-5mg/kg masy ciała a więc dla dorosłego człowieka 60-300 mg. Jest zatem niemal tak samo silnie trujący jak cyjanek, ale zabija wolniej.
Zatrucie przewlekłe z mniejszymi dawkami daje objawy mniej nasilone, rozwija się często stłuszczenie lub marskość wątroby, osłabienie mięśni, bladość skóry z widocznymi rozszerzonymi naczyniami. Co ciekawsze, nieorganiczne związki arsenu III są bardziej trujące niż organiczne - choć jest tu parę wyjątków. Związki arsenoorganiczne wywołują głównie objawy neurologiczne, uszkadzając komórki nerwowe.

Jednak oprócz stosowania jako trucizny, dosyć wcześnie, bo już w XV wieku, próbowano używać arsenu jako leku. Znanym takim preparatem był płyn Fowlera, nazywany też rozczynem arsenowym, będący 1% roztworem arsenianu potasu, używanym dla uśmierzenia gorączki, zimnicy, grypy, bólów głowy, niedokrwistości i właściwie wszystkiego co przyszło lekarzom do głowy. Popijano go jak tonik, wstrzykiwano do krwi i podskórnie przez cały XIX wiek aż do lat 60. minionego stulecia. Zażywany w większych dawkach wywoływał przewlekłe zatrucie. Powiązano też jego spożywanie ze zwiększoną zapadalnością na raka, zwłaszcza pęcherze i skóry
Paradoksalnie jednak jak się okazuje, może być skutecznym chemioterapeutykiem w niektórych odmianach raka, zwłaszcza z białaczce, osiągając na tyle dobre rezultaty, że ostał oficjalnie zatwierdzony jako lek. Najwidoczniej jest po prostu bardziej toksyczny dla komórek nowotworowych niż zwykłych. Ze względu na szybki metabolizm, komórki guza są niemal ciągle w stanie stresowym, jednak nie podlegają apoptozie, to jest naturalnemu obumarciu. Najprawdopodobniej arszenik, blokując część enzymów, uruchamia ten mechanizm, i rak zaczyna obumierać.
Płyn Fowlera wycofano, jednak w międzyczasie odkryto inny preparat który okazał się znacznie bardziej bezpieczny. Od kiedy pod koniec XV wieku w Europie pojawił się syfilis, choroba zasadniczo uważana była za Dopust Boży i karę na cudzołożników. Przez kilka następnych wieków kiła szerzyła się w całym świecie, skazując na kalectwo, bezpłodność lub śmierć wielu mężczyzn i wiele kobiet. Już Paracelsus proponował, aby leczyć kiłę solami rtęci, zarówno zewnętrznie jak i wewnętrznie, co wprawdzie wiązało się z ryzykiem zatrucia i pomagało raczej słabo, ale i tak było lepsze niż popularne "metody" jak seks z nieletnią dziewicą, czy celibat i msze gregoriańskie.
Na początku XX wielu sprawą zajął się Paul Ehrlich, niemiecki lekarz i farmokolog, twórca chemioterapii. Wychodząc z teorii "magicznej kuli" uważał że na każdą chorobę wywoływaną przez jakiś drobnoustrój, można znaleźć lek będący substancją, chemicznie zatrzymującą jakąś ważną przemianę biochemiczną w owym mikrobie. Wiedziano że kwas arsanilowy, nazywany Atoxylem, używany dotychczas jako lek na choroby skórne, wykazuje działanie na pierwotniaki gorączki afrykańskiej. Wprawdzie działanie było słabe i dopiero duże dawki były skuteczne, wywołując jednak w takiej ilości liczne powikłania jak choćby ślepotę. Ehlich uznał jednak, że lek ten wyznacza już jakiś kierunek, być może zatem udałoby się znaleźć taką pochodną organiczną arsenu, która byłaby słabo trująca dla człowieka, zaś silnie dla pierwotniaków i bakterii chorobotwórczych. Zaczął więc syntezować kolejne związki sprawdzając ich skuteczność. Był w tym bardzo skrupulatny, lecz po sprawdzeniu 600 związków nadal nie mógł znaleźć odpowiedniej substancji. Sukcesem okazała się dopiero substancja numer 606, nazwana Salwarsanem. Był to pierwszy skuteczny i bezpieczny lek na kiłę, stosowany aż do odkrycia penicyliny.
Krętek kiły, slawarsan w formie trimeru i dawna rycina przedstawiająca chorego pokrytego wrzodami

Oprócz zastosowań medycznych, arszenik był kiedyś używany w kosmetykach jako składnik "tynktury białej" a więc pudru zapewniającego modną bladość skóry. Mógł się tą drogą wchłaniać, więc wraz ze szminką na bazie rtęci czy cieniem do powiek z antymonem, należał do najbardziej szkodliwych dawnych upiększaczy. Dodawany do masy szklanej dawał jasnozielone zabarwienie (współcześnie zielone szkło "butelkowe" to wynik dodatku żelaza II), zaprawiano nim skóry zwierzęce, jego solami nasycano drewno aby zabezpieczyć przed szkodnikami, przede wszystkim był jednak trutką na szczury i owady.
Szczególnie popularną pochodną była Zieleń Paryska - octan arsenian miedzi. Był to jasnozielony proszek o intensywnej barwie, w odróżnieniu od innych pigmentów nie czerniejący i nie blaknący. Używano go pospolicie do malowania ścian i farbowania tapet ściennych, niestety częste były zatrucia tą waśnie drogą, gdy kawałki skruszonej farby dostały się do jedzenia, lub przypadkiem zjadło je dziecko. Właściwości te były na tyle silne, że używano go do oprysków przeciwko stonce. Nazwa podobno ma wywodzić się od wielkiej akcji wytrucia paryskich szczurów, kiedy to oblano jego zawiesiną wszystkie kanały, a Sekwana stała się zielona, ale nie znalazłem tu potwierdzenia.

Gdy Marry Ann Cotton stanęła przed sądem w marcu 1873 roku, obrońca powoływał się na ten fakt, twierdząc że Karol mógł zatruć się wdychanymi cząsteczkami farby. Lekarze uznali to jednak za niemożliwe, aby wchłonąć przez płuca tak dużą ilość arsenu i nie doznać w pierwszej kolejności objawów płucnych, ponadto bardzo trudno było aby chłopiec zainhalował wykrytą w jego ciele ilość w ciągu zaledwie pięciu dni. Być może obrona przebiegałaby łatwiej, gdyby wiedziano, że pod wpływem wilgoci i pleśni, tworzy się Arsyna - arsenowodór, trujący gaz o zapachu czosnku, który odegrał dużą rolę w historii badań kryminalistycznych.

Jak jednak poznać że w danym przypadku mamy do czynienia z zatruciem tym właśnie pierwiastkiem? To samo pytanie zadawano sobie już przed wiekami i na dobrą sprawę jeśli nie udało się skłonić podejrzanego do przyznania nie w sposób było cokolwiek mu udowodnić. Pierwszym znanym przypadkiem gdy udało się zidentyfikować truciznę, była sprawa Mary Blendy.
Była to córka dobrze zarabiającego angielskiego prawnika, od dziecka żyjąca w dobrych warunkach i rozpieszczana przez krewnych. Ojciec trochę za bardzo afiszował się ze swym majątkiem, rozpowiadając że przeznaczył córce na posag 10 tysięcy funtów. Nic więc dziwnego że jak muchy do miodu zewsząd zlatują się bardzo kochający zalotnicy. Z nich wszystkich przypadł jej do gustu tylko jeden, William Henry Cranstoun, syn szkockiego szlachcica. Wszystko z początku przebiega pomyślnie aż nie zostaje ujawnione, że Henry już jest żonaty i bynajmniej nie rozwiódł się do tej pory. Ponadto na jaw wychodzą jego długi, dlatego pan Blendy zaczyna przebąkiwać, że do małżeństwa raczej nie dojdzie. Jednak Marry do tego czasu zakochała się w narzeczonym, dlatego decyduje się nawet na niedorzeczną próbę ułagodzenia ojca przy pomocy otrzymanego od Cranstouna "starożytnego eliksiru miłosnego", mającego postać białego proszku, jaki należy dosypać ojcu do jedzenia i napojów. Od tego czasu pan Blendy choruje i słabnie z każdym dniem, aby wreszcie umrzeć 14 sierpnia 1751 roku.
Marry najwyraźniej zorientowała się, że "starożytny eliksir" może być przyczyną choroby ojca, dlatego za radą znajomego lekarza pozbywa się dowodów na potajemny romans, wyrzuca resztki zatrutego jedzenia i proszku. Zapobiegliwa pokojówka, która zauważyła, że służąca zachorowała po spróbowaniu jedzenia swego pana, zachowała część proszku i miskę kaszy. Po śmierci ojca, Marry zostaje aresztowana, zaś zadaniem sądu staje się udowodnienie, że biały proszek jest trucizną.

Na dobrą sprawę prócz prób dawania zatrutego jedzenia zwierzętom i obserwowania reakcji, nie znano wówczas metod rozpoznawania trucizn, nawet jeśli posiadano ich pokaźną próbkę a i tak można było obalić taką obserwację dowodząc, że zwierzęta akurat zachorowały na cholerę. Doktor Anthony Addington postanowił zatem wykonać wszelkie próby porównawcze, jakie tylko przyszły mu do głowy. Wziął osad z dna miski i część proszku, i porównał z próbką arszeniku, stwierdzając podobny wygląd. Próbki rzucone na zimną wodę tonęły, część unosiła się po wierzchu a tylko niewielka część rozpuściła się. W ciepłej wodzie proszek rozpuszczał się a po zakwaszeniu wydzielał się biały osad. Proszek rzucony na rozżarzone żelazo nie topił się, lecz sublimował, wydzielając białe opary o czosnkowym zapachu. Inne proste próby chemiczne wskazywały na podobieństwo próbki do związku.
We swym wystąpieniu przed sądem oparł się Addington na zdroworozsądkowym stwierdzeniu, że jeśli próbka wygląda jak arszenik, zachowuje się jak arszenik, pachnie jak arszenik i wreszcie truje jak arszenik, to musi to być arszenik. Cały wywód zrobił duże wrażenie na sądzie i publiczności, będąc właściwie pierwszą próbą dowodzenia poprzez próby fizykochemiczne o winie oskarżonego. Toteż 6 kwietnia 1752 roku, Marry Blendy zostaje publicznie powieszona. Kochanek ucieka za granicę jeszcze przed początkiem procesu.[2]

Nie wiadomo mi czy w późniejszych latach podobne próby przydały się jeszcze w jakiejś sprawie, jednak dopiero na początku XIX wieku odkryto pierwsze próby charakterystyczne na arsen. W 1787 roku, Johann Metzger stwierdził, że gdy ogrzewa się arszenik z węglem drzewnym, na górnej części próbówki gromadzi się czarny osad metalicznego lustra. Węgiel redukował tlenek, zaś powstający metal miał postać par, osiadających na chłodniejszej powierzchni. Był to już krok naprzód, choć podobny wynik zawał antymon. Jednak dopiero w 1806 roku, niemiecki farmakolog Valentin Rose wykorzystał ten test w pośmiertnym badaniu ofiary zatrucia. Wziął żołądek ofiary, i spopielił w obecności węglanu potasu, wapna palonego i kwasu azotowego, otrzymaną pozostałość poddał próbie Metzgera, potwierdzając obecność arsenu - jednak i tą reakcję wywoływał antymon, a także cyna.
Dopiero potem Samuel Hanneman, znany jako twórca Homeopatii stwierdził, że przepuszczając siarkowodór przez zakwaszony roztwór arsenu, otrzymujemy żółty osad siarczku, rozpuszczalny w roztworze amoniaku. Niestety nie wszyscy byli przekonani o tym, czy metoda była słuszna. Przekonał się o tym dobitnie James Marsh, brytyjski chemik, który w 1832 roku podjął się pomocą przy śledztwie w sprawie śmierci George'a Bodle, zamożnego rolnika z Plumstead, który zmarł po wypiciu kawy. Zachorowało wówczas jeszcze kilka innych osób, ale lubiący kawę ojciec umarł tego samego dnia. Sędzia pokoju zabezpieczył dzbanek kawy, podejrzewając o zabójstwo syna Johna, który zdradził się wcześniej że tylko czeka aż ojciec, rodzinny tyran trzymający wszystkich na krótkiej smyczy, umrze. Marsh wziął kawę oraz płyn otrzymany z rozpuszczenia części żołądka zmarłego w kwasie, przepuścił przezeń siarkowodór i uzyskał żółty osad, który rozpuścił się w amoniaku. Pewny siebie opowiedział o tym w sądzie, jednak ława przysięgłych niewiele zrozumiała z jego wywodu, powstrzymana chemicznymi nazwami. Natychmiast wyzyskał to obrońca, który tłumaczył że to jakaś niesprawdzona metoda, o której nawet nie wiadomo jak działa. John Bodle zostaje wypuszczony, co Marsh uznaje za osobistą porażkę. Notabene dziesięć lat później Bodle ponownie zostaje aresztowany tym razem za oszustwa i skazany na siedem lat kolonii karnej. Tam przy okazji przyznaje że rzeczywiście otruł ojca.[3]
Marsh przegrzebał solidnie wszystkie prace na temat arsenu i natknął się na klasyczny artykuł Sheleego, który już w 1775 roku stwierdził, że z roztworu arsenu pod wpływem wodoru można wydzielić pachnący czosnkowo gaz - Arsynę 
 As + 3 H+ →  AsH3
 który łatwo rozkłada się z wydzieleniem wolnego metalu:
2 AsH3 3 H2 + 2 As
tworzącego lustro metaliczne na chłodnych powierzchniach.
Marsch zbudował więc aparat, składający się z butli zawierającej cynk, do której wlewano mieszaninę kwasu z badanym roztworem. Kwas reagował z cynkiem wydzielając wodór, który jednak w stanie in statu nascendi, a więc przed połączeniem w dwuatomowe cząsteczki, wykazywał dużą reaktywność, wystarczającą do zredukowana arsenu. Powstający arsenowodór zmieszany z wodorem wypływał z butli przez U-rurkę z osuszaczem zakończoną kapilarą. Tam wodór był zapalany, zaś w płomień wprowadzano chłodną płytkę porcelany. Chodziło o to, aby schłodzić płomień i aby po rozkładzie arsenowodoru w płomieniu wodoru, uzyskać lustro metaliczne. Gdyby płomień nie był tak przyduszony, arsyna utleniałaby się, dając opary tlenku arsenu, te zaś trudno by było złapać.
Podobne lustro metaliczne dawał antymon i bizmut, lecz lustro arsenowe rozpuszczało się w roztworze chloranu sodu. Próba była na tyle czuła, że dawała pozytywny wynik nawet dla 0,02 miligrama arsenu. Zawartość oceniano porównując stopień zaciemnienia z płytkami wykonanymi przy znanych ilości arsenu, choć próbowano też metod wagowych, ważąc płytkę przed i po opaleniu. Test, opublikowany po raz pierwszy w 1836 roku odegrał dużą rolę w najsłynniejszym procesie kryminalnym w XIX wiecznej Francji - w sprawie Marii Lafarge, oskarżonej o otrucie męża, której proces stał się widowiskiem i grą emocji równie emocjonującą, jak dziś sprawa śmierci Madzi. Ostatecznie Maria Lafarge została skazana w 1840 roku na więzienie. Siedząc wydawała bestsellerowe pamiętniki w których dowodziła swej niewinności.
Od tego czasu arszenik przestał być niewykrywalną, idealną trucizną i jedynie błędy śledczych oraz patologów, mogących uznać że nie mają do czynienia z tą trucizną, mogły ocalić trucicieli przed stryczkiem. Jak napisał Arthur Conan Doylle, twórca postaci Sherlocka Holmesa "Nie ma zbrodni doskonałej, są tylko głupkowaci inspektorzy policji".


A co z Marry Ann?
 Pani Cotton od początku zapewniała o swej niewinności, jednak szybko odnaleziono świadków, głównie aptekarzy, którzy poświadczyli że kupowała u nich arszenik. W dodatku okazało się że na cztery dni przed śmiercią chłopiec został przez nią dotkliwie pobity w wybuchu gniewu. Ponadto wykazano, że jako pielęgniarka miała łatwy dostęp do trucizny, zaś lekarze chcący ją obronić, wykazali się niepewnością co do tego gdzie właściwie stała u nich butelka tlenku arsenu - skoro nie byli nawet tego pewni, zdając się na pielęgniarki, to mogli też nie zauważyć, że trochę ubyło.
Ostatecznie sąd uznaje jej winę, i 24 marca 1873 roku zostaje powieszona.

Dlaczego zabijała? Trzeba zauważyć że jej pierwsze małżeństwo trwało prawie dziesięć lat, przez te wszystkie lata nie odważyła się otruć męża, gdy zaś wreszcie to zrobiła, otrzymała znaczny spadek. Jak sądzę zadziałał tu prosty mechanizm, sprawiający że ludzie seryjnie popełniają kolejne przestępstwa w ten sam sposób - mianowicie uznała że skoro za pierwszym razem się udało i nikt niczego nie podejrzewał, to może udać się i drugi raz. Znam przypadek złodzieja, który okradał lekarzy - raz zdarzyło mu się ukraść sprzęt z pustego, otwartego gabinetu w przychodni, więc po pewnym czasie zaczął specjalnie przychodzić czekając aż lekarz wyjdzie. Przyłapano go za czwartym razem. W ten właśnie sposób jak sądzę, tworzy się charakterystyczny modus operandi - oczywiście znaczenie mają tu też uwarunkowania psychologiczne.
A dlaczego zabijała dzieci? Myślę że zadziałało tu kilka mechanizmów - mogła nie radzić sobie z macierzyństwem, więc truła dzieci aby nie sprawiały jej problemów. W przeciwnym razie aż do czwartego "męża" dorobiłaby się dwunastki własnych dzieci. Jednak warto zauważyć, że rodzenie dzieci było też sposobem na przywiązanie do siebie kolejnych partnerów - zawsze starała się zbliżyć do nich na tyle, aby zajść w ciążę i tym skłonić do ślubu. W potem rodziła kolejne aby dać więcej powodów do pozostania w związku. Gdy truła dzieci, zarówno własne jak i cudze, pokazywała jaką jest czułą opiekunką, sprawną pielęgniarką, matką. Musiało to w niej powoli dojrzewać, zaś motywem najwyraźniej były pieniądze.
Traktowała ludzi instrumentalnie - byli dla niej sposobem zdobycia pieniędzy i prowadzenia życia jakiego chciała. Gdy zaczynali jej przeszkadzać, ginęli. Marry Ann Cotton była jedną z pierwszych angielskich seryjnych morderczyń.

Z innych sławnych spraw dobrze jest wspomnieć o przypadku Napoleona, w którego włosach znaleziono dużo arsenu, choć teorie jakoby miano go otruć gdy siedział uwięziony wydają mi się słabo umotywowane. U nas podejrzewa się, że arszenik dodany do farby był sposobem otrucia Wojciecha Korfantego, gdy po powrocie do kraju w 1939 roku został zaaresztowany, choć właściwie nie ma na to wielu dowodów.. Identyczne podejrzenia są co do sprawy generała Rozwadowskiego. Sam szukając czegoś w bibliotekach cyfrowych natknąłem się na tajemniczy przypadek Pomadzinej, oskarżonej 1873 roku o otrucie czterech krewnych - syna wuja, dziadka i dwóch ciotek, przy pomocy placuszków zaprawionych arszenikiem. Wuj oskarżonej wydziedziczył ją na korzyść syna, zaś dziadek zapisał jej w spadku znaczną posiadłość. Oskarżona twierdziła że ciasto znalazła na oknie, że próbowała go i nic się nie działo, dlatego zaniosła je do wuja i dziadka. W dodatku gdy dziadek poczęstował ciastem jej córkę, matka wytrąciła jej ciastko z ręki. Mimo to obrońca w gorącej przemowie objaśnił się był to tylko nieszczęśliwy wypadek związany z lokalnymi zabobonami. Mieszkańcy tamtych okolic mieli mieć zwyczaj wystawiania w oknie lub na progu "cichej jałmużny" dla duchów zmarłych, będących też sposobem na zapewnienie sobie szczęścia, że zaś mieszkańcy wsi zajmowali się przemytnictwem i przemycali mąkę i arszenik, mogło się zdarzyć, że ktoś upiekł dla duchów placuszek z obu tych produktów, aby zapewnić sobie szczęście w przemycie.
To dziwaczne rozumowanie zostało przez sąd uznane za prawdopodobne i  28 marca, cztery dni po egzekucji Marry Cotton, nasza Pomadzina została uniewinniona. Sprawa nie zdobyła rozgłosu i o ile mi wiadomo nie miała dalszego kryminalnego ciągu, jednak sami chyba przyznacie, że szczęśliwy zbieg okoliczności był dla tej kobiety trochę za szczęśliwy.[4]

Na koniec jeszcze jedna sprawa - tłumacze z angielskiego notorycznie mylą Arsen  z arszenikiem, co prowadzi do takich kwiatków, jak "związki arszeniku" z czym się spotkałem w paru artykułach.
-------
Źródła:
Strona poświęcona przypadkowi Cotton http://www.maryanncotton.co.uk/

[1]  http://en.wikipedia.org/wiki/Mary_Ann_Cotton
[2] http://www.capitalpunishmentuk.org/blandy.html
[3]  http://www.laborundmore.de/archive/575588/Giftmord-und-Arsen-Der-Nachweis-eines-Volksgiftes.html 
[4] Gazeta Warszawska Sądowa,  1 kwietnia 1873, EBUW



*http://members.tripod.com/~Prof_Anil_Aggrawal/poiso002.html
*http://en.wikipedia.org/wiki/Giulia_Tofana
*http://it.wikipedia.org/wiki/Giulia_Tofana
*http://en.wikipedia.org/wiki/1858_Bradford_sweets_poisoning
*http://en.wikipedia.org/wiki/Leukonychia
*http://en.wikipedia.org/wiki/Mary_Blandy
*http://www.phmd.pl/fulltxthtml.php?ICID=868643
*http://pl.wikipedia.org/wiki/Medyczne_zastosowanie_tr%C3%B3jtlenku_arsenu
*http://www.drugstoremuseum.com/sections/level_info2.php?level_id=145&level=2


sobota, 16 kwietnia 2011

Brązowienie słoneczników i ultramaryna

Informację o tym, że "Słoneczniki" Van Gogha brązowieją, i że jest to wynik specyficznych reakcji chemicznych, znalazłem dopiero w kwietniowym numerze National Geographic, choć jak widzę, w lutym rozpisywały się o niej media. Nie wiem jak mogłem to przeoczyć. Skoro jednak dowiedziałem się, i pogrzebałem dokładniej w temacie, uznałem że może w nowej notce nie opowiem o świeżej informacji, ale może zrobię to lepiej i dokładniej. I po chemicznemu.


Słoneczniki
"Słoneczniki" to chyba jeden z najbardziej znanych obrazów Van Gogha. Mi osobiście bardziej podobają się jego obrazy krajobrazowe, jak na przykład "Gwiaździsta noc" czy "Droga z cyprysami", ale de gustibus est not disputandum więc nie w sposób się spierać o to, który jest znańszy a który ładniejszy.
Ów impresjonista z wyraźnymi odchyłami psychicznymi, uwielbiał rozedrgane, pulsujące, jaskrawe obrazy. Bardziej liczyło się u niego wrażenie - impresja - i emocje wywołane widokiem, aniżeli dokładność odwzorowania. Słoneczniki należały chyba do jego ulubionych kwiatów, łącznie bowiem namalował siedem wersji słoneczników w wazonie, różniących się efektami kolorystycznymi i fakturą farby. Dla osiągnięcia odpowiednich efektów chętnie używał żółci chromowej - jaskrawego pigmentu, który w owym czasie był jeszcze stosunkowo nowym odkryciem. I to właśnie stało się zalążkiem problemów. Oto bowiem Słoneczniki, i inne obrazy z przewagą żółci, brązowieją, ciemnieją, i przez długi czas nie było wiadomo dlaczego tak się dzieje.

Żółć chromowa to Chromian (VI) ołowiu - PbCrO4 - nieorganiczna sól zawierająca chrom na najwyższym stopniu utleniania +6. Związek, zależnie od sposobu otrzymania i rozdrobnienia, przyjmuje barwy od intensywnej żółci do jasnej czerwieni. W naturze występuje jako minerał Krokoit. Choć jest w zasadzie nierozpuszczalny w wodzie, uważa się go za silną truciznę, która - jak wszystkie chromiany na tym stopniu utlenienia - ma własności rakotwórcze. Najczęściej otrzymuje się go sztucznie, mieszając roztwory chromianu VI potasu i azotanu V ołowiu
K2CrO4 + Pb(NO3)2 → PbCrO4↓ + 2KNO3
Vincent van Gogh chętnie używał tego barwnika i, jak to już było powiedziane, obrazy ciemniały. Ta specyfika żółcieni chromowej była zresztą znana o dawna, i już w czasach malarza mogła by zauważalna. Znalazłem informację, że w farbach olejowych, pigment ten, podobnie jak również oparta na chromianach żółć barytowa, potrafi wręcz zzielenieć na słońcu [1]. Zauważono jednak, że nie wszystkie obrazy ciemniały w takim samym stopniu. Proces przebiegał znacznie szybciej na obrazach rozjaśnianych białymi barwnikami. Media ironizowały, że wybielenie wywołało pociemnienie. Co takiego jednak zachodziło?

środa, 6 kwietnia 2011

Jodek reaguje z chmurą wytwarzając wodór...

Informacja, która stała się powodem napisania tej notki, jest dość stara, jednak dobrze pokazuje jak oczywista dla posiadającego minimum wiedzy chemicznej bzdura, może się szeroko rozpowszechnić w mediach bez odrobiny krytycznego podejścia ze strony redaktorów.

W 2009 roku Chiny nawiedziła susza. Przez blisko 100 dni nie padał tam deszcz, co nie zdarzało się od 36 lat. Władze zdecydowały się zatem na radykalne rozwiązanie - sztuczne sprowadzenie opadów. Polskie media opisywały rzecz tak:
Stolica Chin przebudziła się w niedzielę pod grubą warstwą białego puchu: pierwszą w tym sezonie śnieżycę nad Pekinem wywołano sztucznie, aby przeciwdziałać skutkom długotrwałej suszy - podała oficjalna chińska agencja Xinhua.
Pokrywa śniegu w większości dzielnic Pekinu pozostanie zapewne na dłużej, ponieważ nad stolicę nadciągnął w sobotę w nocy rozległy zimny front atmosferyczny.
Chiny nie po raz pierwszy zastosowały metodę sztucznego wywoływania opadów śniegu za pomocą bombardowania chmur odpowiednimi środkami chemicznymi.
(...)
W kwietniu 2007 roku chińscy naukowcy zdołali spowodować sztuczną śnieżycę w tybetańskim okręgu Nagqu, na wysokości 4500 metrów n.p.m. w celu złagodzenia skutków suszy na najwyżej położonym płaskowyżu świata. Opady sprawiły, że wyschnięte pastwiska w tym rejonie znów się zazieleniły.[1]
I wszystko było by w porządku gdyby nie ów akapit:
W lutym tego roku, po przeszło 100 dniach suszy, z 28 wyrzutni rozstawionych w mieście wystrzelono ponad 500 ładunków jodku srebra o rozmiarach naboju karabinowego, aby wywołać reakcję chemiczną: w kontakcie z chmurami uwalnia on wodór, ten zaś łącząc się z tlenem atmosferycznym powoduje, zależnie od temperatury, opady deszczu lub śniegu
Zaraz, zaraz... Jodek reaguje z chmurą i wytwarza wodór? To bardzo ciekawe. Spróbujmy to przedstawić po chemicznemu:
AgJ + Chmura = H2
H2 + O2 = deszcz

Rzeczywiście, bardzo proste wyjaśnienie. Gdyby to była prawda.
Żeby to jednak wyjaśnić, najpierw przedstawię nasz związek:

Jodek Srebra, AgI to nieorganiczny związek srebra, mający postać jasnożółtego, ciemniejącego na świetle proszku, praktycznie nierozpuszczalnego w wodzie. Łatwo można go otrzymać, dodając jodek potasu do roztworu azotanu (V) srebra. Wytrąca się wówczas pod postacią kłaczkowatego, lekko żółtawego osadu, częściowo rozpuszczającego się w nadmiarze jodków wskutek tworzenia rozpuszczalnego kompleksu AgI2-. Własności te wykorzystuje się w analizie jakościowej.
Jak już powiedziałem jest nierozpuszczalny w wodzie, i nie reaguje z nią. Zatem wstrzelony do chmury, będącej przecież zawiesiną kropelek wody, nie wywoła chemicznej reakcji i nie rozłoży wodę na tlen i wodór. Gdyby nawet, to owo "łączenie się wodoru z tlenem" przebiegało by gwałtownie - mieszanina obu gazów ma właściwości wybuchowe.

Dlaczego zatem stosuje się go w zasiewie chmur? AgI ma strukturę krystaliczną bardzo podobną do struktury lodu, dlatego może stać się dla niego zarodkiem krystalizacji. Kryształ jodku staje się niejako rusztowaniem dla kryształu lodu. Gdy w chmurę zawierającą przechłodzoną wodę, a więc wodę w stanie ciekłym poniżej temperatury zamarzania, co zdarza się gdy jest wolna od zanieczyszczeń; wprowadzimy pył jodku srebra, to każdy kryształek połączy się z kropelką wody i zainicjuje jej zamarznięcie. Powstałe kryształki lodu łącząc się z innymi kropelkami również je zamrożą, tym samym w chmurze szybko rośnie liczba nowych jąder krystalizacji, te zaś, oblepiane kolejnymi kropelkami, stają się coraz cięższe i opadają, stopniowo pochłaniając następne kropelki i rosnąc.
Jeśli temperatura w niższych warstwach chmury jest dodatnia, kryształki topią się, stając się kroplami deszczu. Jeśli temperatura jest ujemna, spada śnieg. Świetna grafika:
Zasiew chmur z powietrza i lądu
Na jedno zasianie wystarcza kilka gram związku, więc ewentualne toksyczne działanie soli srebra jest minimalne. Obecnie próbuje się też innych substancji higroskopijnych, na przykład soli kamiennej, co pozwala na wywołanie opadu z chmury nie zawierającej przechłodzonej wody. Natomiast sztucznych chmur deszczowych się nie wytwarza.
Właściwości jodku srebra odkrył w latach 40. chemik Bernard Vonnegutt - brat amerykańskiego pisarza Kurta Vonneguta, autora humorystycznych powieści z których najbardziej znana jest "Rzeźnia numer 5" (polecam). Niektórzy wiążą ten fakt z jego powieścią "Kocia kołyska", gdzie jeden z bohaterów, Hoeniker, stwarza alternatywną odmianę krystaliczną wody Lód-9, zamarzającą w temperaturze pokojowej, której wrzucenie do morza spowodowałoby zamrożenie oceanów i wielką katastrofę.

W lutym tego roku Chińczycy ponownie zasiewali deszcz, tym razem walcząc z suszą największą od 200 lat. Notatkę z PAP, z literówką:
Pociski z jodkiem srebra opalono zarówno z samolotu, jak i z ziemi.. [2]
przedrukowały wszystkie media.
------
Źrodła:
[1] http://wiadomosci.wp.pl/kat,18032,title,Caly-Pekin-przykryty-sztucznym-sniegiem,wid,11651857
[2] http://fakty.interia.pl/swiat/news/chiny-zasiewaja-chmury-susza-najgorsza-od-200-lat,1595433

* http://pl.wikipedia.org/wiki/Zasiewanie_chmur
* http://en.wikipedia.org/wiki/Silver_iodide