informacje



Pokazywanie postów oznaczonych etykietą Z laboratorium. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą Z laboratorium. Pokaż wszystkie posty

środa, 11 września 2013

Kiedyś w laboratorium (32.)

Na zajęciach z chemii fizycznej jednym z ćwiczeń było badanie stałej kwasowej wskaźnika pH czerwieni fenolowej. Do roztworu bufora z dodatkiem wskaźnika, dodawaliśmy po 0,2 ml wodorotlenku sodu. Po każdym dodatku i rozmieszaniu mieszadełkiem sprawdzaliśmy absorbancję roztworu w spektrofotometrze. Oczywiście nie mogłem się powstrzymać przed zrobieniem zdjęć ukazujących powolną zmianę barw - ostatni odcień podobał mi się najbardziej.

Czerwień fenolowa to wskaźnik zmieniający barwę od żółtej w roztworach obojętnych, do różowo-purpurowej w zasadowych. Jej cząsteczka jest bardzo podobna do zasadowej formy fenoloftaleiny - ten sam układ trifenylowy z dwoma pierścieniami z grupą hydroksylową i jednym z sulfonową.
W warunkach zasadowych następuje odszczepienie obu protonów z grup hydroksylowych i zmiana struktury elektronowej, co skutkuje zmianą barwy. Barwnik dawniej był używany w testach medycznych (tzw. PSP test) do sprawdzania czynności nerek. Po wstrzyknięciu do krwi lub bezpośrednio do tętnicy nerkowej, czerwień fenolowa była wydalana z moczem, co w normalnej sytuacji następowało szybko i w całości. Kolorymetryczne oznaczenie stężenia pozwalało stwierdzić, czy nerki wydalają we właściwy sposób. Obecnie test wyszedł już chyba z użytku.
Odczyn przy którym następuje zmiana barwy, jest zbliżony do normalnego odczynu płynów komórkowych i krwi, stąd dodatek czerwieni fenolowej do hodowli tkankowych pozwala szybko ocenić czy nie dochodzi do zakwaszenia, zwykle z powodu zakażenia bakteryjnego.
Przy okazji zrobiłem też krótki film:

sobota, 10 sierpnia 2013

Kiedyś w laboratorium (31.)

W poprzednim semestrze na zajęciach z analizy żywności mieliśmy ćwiczenie o sprawdzaniu zawartości tłuszczu w tłuszczach dostępnych handlowo. Zrobiliśmy z bibuły naczynko, do którego odważyliśmy określoną ilość smalcu, i włożyliśmy do aparatu Soxhleta:

Jest to bardzo ciekawy przyrząd do ciągłej ekstrakcji w strumieniu rozpuszczalnika - w dolnym zbiorniczku wrze rozpuszczalnik, którego opary szeroką rurką boczną dostają się do chłodnicy zwrotnej. Tam wykraplają się i trafiają na polkę z ekstrahowanym produktem - w tym przypadku ze smalcem w bibule.

Gdy poziom rozpuszczalnika wzrośnie odpowiednio, przelewa się drugą boczną rurką ukształtowaną jak lewar wodny. Po zassaniu lewara cała porcja roztworu z półki z ekstrahowanym produktem, gwałtownie przelewa się do dolnego zbiornika. A ze zbiornika unosi się para, która dopływa do chłodnicy... i tak w kółko aż do zupełnego wymycia. W naszym przypadku ćwiczenie zakończyliśmy po 10 przelewach.
Rozpuszczalnikiem był heksan.

Po wysuszeniu bibuły ważyliśmy ją. Różnica mas powinna dawać informację o ilości substancji stałych, a zatem procencie masy nie będącym tłuszczem. W naszym przypadku wyniki były bardzo zabawne - gilza po ćwiczeniu była lżejsza niż przed. Nasz smalec zawierał 102% tłuszczu.

czwartek, 8 sierpnia 2013

Kiedyś w laboratorium (30.)

Podczas rozdziału mieszaniny poreakcyjnej na kolumnie preparatywnej, należy wyłapać kiedy z kolumny zaczyna schodzić któraś z rozdzielonych substancji. Jeśli dana frakcja jest silnie zabarwiona, nie powinno nastręczać to trudności - po prostu podstawiamy pod kurek wylotu kolbkę, gdy tylko frakcja zacznie skapywać, i odstawiamy gdy przestanie.
Niestety nie zawsze frakcje mają wyraźne zabarwienie, a gdy czoło oraz tył wędrującej porcji są dosyć rozcieńczone, bardzo trudno jest na oko wyłapać kiedy już się zaczyna i kiedy już się kończy. Niestety też dotyczy to większości przypadków, a gdy teoretycznie naszego produktu ma powstać bardzo malutko, rzędu 100-200 mg, utrata choćby kilku kropel da już zauważalny spadek wydajności.

Więc co się robi? A no bierze się przy pomocy szklanej kapilarki odrobinę roztworu - w taką kapilarkę zmieścić się może jedna-dwie krople - i nakrapla na płytkę używaną do chromatografii. Takie płytki często są domieszkowane dodatkami fluoryzującymi w ultrafiolecie. Jeśli w kropli jest sam rozpuszczalnik, to zwykle nie zmienia on świecenia, jeśli jest tam rozpuszczona jakaś substancja pochłaniająca ultrafiolet, to miejsce na pytce jest ciemniejsze, zwykle z różowawym odcieniem. Ideałem jest sytuacja gdy interesująca nas frakcja świeci w ultrafiolecie:

Dzięki temu łatwiej jest ją wyłapać. Procedura polega zatem na tym, że pobieramy co chwila takie próbki prosto ze strumienia i sprawdzamy na jakiejś wolnej płytce pod lampą UV do momentu, gdy w czystym rozpuszczalniku pojawią się ślady frakcji. Wtedy postawiamy pod wylot kolbkę odbieralnika i znów sprawdzamy skład wycieku do chwili, aż frakcja całkiem zaniknie. Na poniższej płytce dobrze widać powolny spadek stężenia aż do zaniku:
W tym przypadku triazyna świeciła niebieskawo z fioletowawym odcieniem.

...a teraz jadę na zjazd miłośników astronomii w Niedźwiadach, więc nowe wpisy dodam po powrocie.

poniedziałek, 15 lipca 2013

Napełnianie kolumny preparatywnej

Gdy chemik rozpocznie syntezę celem stworzenia potrzebnej mu substancji, po przeprowadzeniu całego procesu otrzymuje mieszaninę poreakcyjną. Znajduje się tam zarówno pożądany produkt, jak i produkty uboczne, nie przereagowane substraty i różne inne zanieczyszczenia. Idealna jest sytuacja, gdy pożądany produkt wyraźnie różni się właściwościami od całej reszty - przykładowo jest nierozpuszczalny w medium reakcyjnym. Wtedy oddzielenie i przekrystalizowanie jest łatwe. Problem pojawia się gdy wszystkie składniki są do siebie pod tym względem podobne.
Standardową techniką do rozdziału takich mieszanin, jest preparatywna chromatografia flashowa.

Techniki chromatograficzne wykorzystują różnicę w oddziaływaniu różnych składników mieszaniny z podłożem chłonnym i rozpuszczalnikiem. Po nałożeniu mieszaniny na początek kolumny wypełnionej absorbentem, lub pokrytej nim płytki, i wymuszeniu przepływu rozpuszczalnika, składniki silniej oddziałujące zostają w tyle za słabo oddziałującymi i tym samym szybciej wymywanymi. W idealnej sytuacji każda substancja przesuwa się przez kolumnę z własną prędkością i niczym ruchoma wydma oddziela się jako osobny barwny prążek od pozostałych. Wówczas można je od siebie oddzielić.
Na tym właśnie polega rozdział mieszanin poreakcyjnych - nakładamy naszą substancję na początek szerokiej rury wypełnionej żelem absorbentu i dolewając od góry rozpuszczalnik wymuszamy grawitacyjny ruch do dołu. Gdy mieszanina porozdziela się, w odpowiednim momencie podstawiamy kolbki pod kurek wylotu, zlewając frakcje zawierające poszczególne składniki. Proste.
Tyle tylko, że ruch rozpuszczalnika pod wpływem samej grawitacji jest zwykle dosyć wolny, co powoduje że całość rozdziału trwać może dosyć długo, dlatego w tej prostej technice "popychamy" go lekkim nadciśnieniem uzyskiwanym przez ręczną pompkę. Chromatografowanie trwa wtedy krótko, jest szybkie (flash) i stąd określenie chromatografia flashowa.

Kolumny nie są jednak zazwyczaj używane jednorazowo - samo naczynie szklane jest używane wielokrotnie, będąc napełniane świeżym i opróżniane ze zużytego wypełnienia. Na kilku zdjęciach postaram się przedstawić jak napełnianie kolumny wygląda od strony praktycznej.

Kolumna chromatograficzna ma postać szklanej rurki, z jednym końcem zamkniętym zaworem z kurkiem. Na samym początku należy przytkać ten wylot tak, aby nie uciekało nam wypełnienie, ale mógł przechodzić rozpuszczalnik. Do środka wrzucamy kłębek waty i wpychamy w wylot prętem:

Gdy rurka jest uszczelniona, wlewamy na dno nieco rozpuszczalnika, aby wypchnąć powietrze z waty. Drobne pęcherzyki by potem przeszkadzały. Bierzemy teraz nasze wypełnienie, zwykle jest to tlenek krzemu lub glinu, w formie bardzo drobnego proszku. Wsypujemy go do zlewki i zalewamy taką ilością rozpuszczalnika, aby otrzymać bardzo rzadkie błotko:

Taka mieszanina jest tiksotropem - mieszana i wstrząsana jest dosyć rzadka, ale po odstawieniu szybko rozdziela się i zagęszcza, dlatego jej wlewanie do pustej kolumny nie jest tak znów łatwe. Ja zwykle w trakcie wlewania mieszałem ją pręcikiem, aby pozostawała półpłynna.

Kolumnę napełniamy błotkiem w około 90% wysokości, i pozwalamy się ustać spuszczając część rozpuszczalnika, zaś aby z masy wyleciały pęcherzyki powietrza, należy lekko wstrząsać całość kolumny, my uderzaliśmy ją lekko z boku gumową rurką. Podczas takiego obsiadania masa trochę się kurczy, i konieczna może być dolewka, dlatego właśnie lepiej przygotować sobie nieco więcej.
Resztki wypełnienia z górnej części kolumny trzeba spłukać rozpuszczalnikiem.

Jeśli chodzi o nakładanie mieszaniny na początek kolumny, to mamy tu dwie filozofie - gdy mieszaniny jest mało, rozpuszczamy ją w rozpuszczalniku i wlewamy do kolumnę, po czym spuszczamy rozpuszczalnik tak, aby ciecz została całkowicie wchłonięta. Aby nie wzburzać powierzchni wypełnienia z wchłoniętą mieszaniną podczas wlewania czystego rozpuszczalnika, można nasypać tam bądź czystego wypełnienia bądź jakiejś sypkiej, ciężkiej i obojętnej substancji. My używaliśmy tu bezwodnego siarczanu magnezu, co przy okazji wychwytywało ślady wody.
Po nałożeniu dolewamy czystego rozpuszczalnika do dodatkowego zbiornika nasadzanego na szczyt kolumny, i popychamy ręczną pompką. I tak zaczyna się rozdział.




Inna możliwość, używana gdy mieszaniny jest dużo lub słabo się rozpuszcza, to rozpuścić ją i dosypać do roztworu wypełnienia, po czym wysuszyć. Suche wypełnienie z pochłoniętą mieszaniną po zwilżeniu umieszcza się na już wypełnionej kolumnie, dzięki czemu unikamy rozmycia podczas nasączania.
Może w tym semestrze uda mi się zmontować materiał filmowy przedstawiający napełnianie kolumny i inne podstawowe czynności.



poniedziałek, 24 czerwca 2013

Synteza I - Wstęp

Więc...
Dotarłem już w nauce akademickiej do tego momentu, gdy zamiast poprzestawać wyłącznie na powtarzaniu już opisanych i przygotowanych reakcji, muszę zacząć podjąć własną pracę naukową - oczywiście pod bacznym okiem promotora, dr Ewy Wolińskiej.
Dokładnie określonego tematu pracy jeszcze nie mam, ale zasadniczo opierać się będzie ona na syntezie zawierających 1,2,4-triazynę ligandów, do katalizatorów mających posłużyć do syntezy asymetrycznej. Zanim jednak omówię coś z przeprowadzonych syntez, muszę oczywiście objaśnić co też są to te triazyny, ligandy i dlaczego synteza miałaby być asymetryczna; ponieważ jednak objaśnienia te bardzo mi się wydłużyły, uznałem że ten wstęp teoretyczny podam w jednym wpisie, zaś trzy kolejne etapy właściwej syntezy omówię w kolejnych. Teraz więc będzie o tym, czy mogą istnieć "lewe" cząsteczki i jak to się ma do naszego zdrowia:

Jedną z właściwości cząsteczek organicznych, jest posiadanie określonej symetrii. Popatrzcie na swoje ręce; najlepiej wyciągnijcie je przed siebie i połóżcie jedną na drugą, bez obracania ku sobie. Nie nakładają się. Kciuki sterczą w przeciwne strony. Możemy jednak obrócić jedną i złożyć z drugą jak do modlitwy, wtedy ich obrysy będą się nakładały, ale nadal nie będą identyczne, bo ich grzbiety będą skierowane w przeciwne strony. Jak byśmy ich nie obracali, jedna nie stanie się taka jak druga.
To zupełnie oczywiste - jedna jest dłonią lewą a druga prawą. Są do siebie podobne jak lustrzane odbicia. Gdyby ktoś miał idealnie symetryczne dłonie, to lustrzane odbicie jednej wyglądałoby dokładnie tak jak druga.
O bryłach mających tą właściwość, że podobnie jak dłonie, posiadają formę "lewą" i "prawą", które nie dają się na siebie nałożyć przez obrót w przestrzeni, i są do siebie podobne jak lustrzane odbicia, mówimy że są chiralne (od greckiego chira - ręka). Jest wiele takich figur. Istnieją lewe i prawe muszle ślimaków, kwiaty, a z przedmiotów codziennego użytku, nożyczki dla prawo i leworęcznych:


Nie inaczej jest ze związkami chemicznymi. Już na początku XIX wieku skrupulatny badacz Ludwik Pasteur, najbardziej znany z badań nad fermentacją, przyglądając się kryształom soli syntetycznego kwasu winowego zauważył, iż są one asymetryczne, oraż że tworzą dwie odmiany, podobne jak lustrzane odbicia. Gdy zaś oddzielił jedną odmianę od drugiej, po prostu sortując kryształki pincetą, stwierdził że kwas winowy "prawy" zawsze krystalizuje w takiej formie. Uznał więc, że widocznie musi istnieć prawa i lewa odmiana kwasu winowego, które różnią się kształtem cząsteczki. Teoria atomowa była wówczas w powijakach, a co dopiero teoria struktury cząsteczek, toteż przez długi czas ta luźna hipoteza nie znajdowała zainteresowania. Do czasu gdy odkryto wreszcie jak rozłożone są w przestrzeni wiązania z węglem w związkach organicznych.

Węgiel w tych związkach tworzy cztery wiązania z innymi atomami - mogą to być wiązania potrójne, podwójne lub pojedyncze. Ponieważ każde wiązanie stanowi parę elektronową, a każda taka para odpycha się od innej, starają się one rozłożyć w przestrzeni w największym możliwym oddaleniu, co w przypadku czterech wiązań pojedynczych realizuje się w formie rozłożenia tetraedrycznego - to jest atom znajduje się jakby w środku foremnego czworościanu, a wiązania biegną do naroży. Jeśli teraz zdarzy się, że przy każdym z wiązań podczepiona będzie inna grupa, to cała cząsteczka stanie się chiralna, i możliwe staną się dla niej dwie konfiguracje - lewa i prawa, podobne jak lustrzane odbicia, jak to widać na tej pięknej grafice:



Związki chemiczne mające taką właśnie lustrzaną właściwość, to enancjomery, zaś atom węgla (czasem może to być fosfor lub azot, ale rzadziej) wokół którego pojawia się ta szczególna asymetria, nazywany jest atomem asymetrycznym, centrum chiralnym lub też jak zaleca się ostatnio centrum stereogenicznym. Konfigurację podstawników wokół takiego atomu określa się na różne sposoby - najczęściej używana metoda, polega na przypisaniu podstawnikom "ważności", tak że na przykład grupa metylowa jest ważniejsza od podstawnika wodorowego, etylowa od metylowej, a chlorkowa od etylowej. Jeśli teraz tak obrócić nasz asymetryczny atom, aby podstawnik o najmniejszej ważności znalazł się z tyłu, to konfigurację określa kierunek w którym poustawiane są pozostałe - gdy od najważniejszego do najmniej ważnego ruch jest zgodny z kierunkiem wskazówek zegara, to konfiguracja jest określana literą R, gdy jest odwrotnie, konfigurację określamy S. Są też inne typy konfiguracji, na przykład dla cukrów i aminokwasów zwykle używa się oznaczeń D i L.

 Gdy związek ma więcej jak jedno takie miejsce, sytuacja się komplikuje, bo wówczas możliwa jest większa liczba kombinacji - każde centrum może mieć dwie konfiguracje. Kwas winowy ma dwa takie miejsca, stąd możliwe są dla niego trzy odmiany: gdy oba centra mają konfigurację R, gdy oba mają S i gdy jedno ma R a drugie S. Glukoza ma cztery takie miejsca i dla niej możliwych jest 16 odmian, cholesterol ma 8 takich miejsc i teoretycznie mógłby mieć ponad 200 odmian, choć niektóre struktury za bardzo deformowałyby cząsteczkę. Takie odmiany wielocentrowe, nazywamy stereoizomerami, i nie są one już swymi lustrzanymi odbiciami.
Natomiast mieszaniny równych ilości R i S izomerów, nazywamy racematami.

I co z tego?
Izomery różniące się konfiguracją, mają takie same właściwości chemiczne, jednak dość istotne różnice zachodzą w ich oddziaływaniu biologicznym, oto bowiem my sami jesteśmy chiralni.
Podstawowymi związkami strukturalnymi organizmów żywych są białka, te zaś zbudowane są z aminokwasów - związków, zawierających grupę aminową i karboksylową, połączonych do tego samego węgla. Jeśli dwa pozostałe podstawniki są różne, to cząsteczka staje się chiralna i tak właśnie jest w przypadku wszystkich biogennych aminokwasów, z wyjątkiem glicyny. Z tych chiralnych cząsteczek zbudowane są białka, a z białek elementy strukturalne, i jak się okazuje, bardzo często konfiguracja substancji wpływa na reakcje jakim ulega w naszym organizmie. Jednym z takich znanych przypadków, jest limonen - izomer D ma zapach pomarańczy i występuje w skórce tego owocu, izomer L ma zapach terpentyny i występuje w roślinach szpilkowych. Będący jego pochodną karwon ma jeszcze wyraźniejsze różnice zapachu - izomer S pachnie anyżkiem, a izomer R miętą. Inny terpenoid, mentol, ma trzy centra i 8 odmian; odmiana występująca w mięcie polnej i mająca najsilniejsze działanie i zapach, ma konfigurację 1R,2S,5R, pozostałe występują rzadko lub zostały otrzymane sztucznie


W podobny sposób różnią się smaki izomerów - lustrzane wersje substancji słodkich mogą mieć smak kwaśny lub gorzki, choć nie zawsze tak jest. Lustrzana wersja glukozy jest tak samo słodka jak oma, ma jednak jedną ciekawą właściwość - nie pasuje do pierwszego enzymu, rozpoczynającego metabolizm. Powoduje to, że nie jest przetwarzana na energię i zostaje w niezmienionej formie wydalona - byłaby zatem idealnym słodzikiem, słodkim ale nie kalorycznym. Niestety jej produkcja jest nieopłacalna.
Dla nas jednak najistotniejszą kwestią nie jest smak czy zapach, lecz działanie na organizm. Nie zawsze, ale jednak bardzo często to, czy dana substancja będzie dla organizmu obojętna, szkodliwa czy lecznicza, zależy od konfiguracji jej centrów stereogenicznych, jeśli takie posiada. Przykładowo lek przeciwbólowy Ibuprofen jest zwykle syntezowany w formie racematu, jednak właściwości lecznicze ma tylko S izomer, co znaczyłoby, że połowa wyprodukowanego związku jest zupełnie niepotrzebna. Okazało się jednak że obie odmiany mogą zamieniać się w siebie w organizmie. Podobnie jest z Naproksenem - tylko jeden izomer ma właściwości przeciwbólowe, a oba są toksyczne dla wątroby.  
Niekiedy działanie odmian może być skrajnie różne, zależnie od konfiguracji. D-propoksyfen jest środkiem przeciwbólowym; L-odmiana ma silniejsze działanie przeciwkaszlowe, ale w wysokich dawkach. Obie odmiany wycofano z powodu częstych sercowych skutków ubocznych. Naturalny kwas L-askorbinowy jest witaminą C, i bierze udział w pewnych przemianach enzymatycznych; izomer D jest nieaktywny i nie może być nazywany witaminą - choć też jest przeciwutleniaczem. Dlatego też witaminę syntetyczną produkuje się tak, aby otrzymać tylko L-izomer, w czym biorą udział pewne szczepy bakteryjne.
Amfetamina i metamfetamina też mają dwie odmiany - odmiana D pobudza zarówno obwodowy jak i centralny układ nerwowy, i ma działanie narkotyczne; izomer L pobudza tylko OUN i nie wywołuje odurzenia, dlatego też ten izomer bywa stosowany w inhalatorach donosowych, wywołując skurcz naczyń krwionośnych. Inny środek narkotyczny, nikotyna, w naturze występuje w odmianie S(-). Enancjomer R ma podobne działanie lecznice, ale jest znacznie mniej toksyczny - źródła podają że od 20 do 40 razy.
Skrajnym przypadkiem jest niechlubny Talidomid, którego jeden enancjomer zapobiegał mdłościom, bólom głowy i miał działanie uspokajające, a drugi miał działanie teratogenne, uszkadzające płód. Produkowany preparat był racemiczną mieszanką obu izomerów, i zalecany kobietom w ciąży, co doprowadziło do narodzin tysięcy kalekich dzieci, co kiedyś już  opisałem. Obecnie bywa używany w chemioterapii do hamowania rozrostu guza.

Skoro między właściwościami izomerów istnieją na tyle istotne różnice, to chyba najlepiej byłoby wziąć tylko jeden z nich i stosować czysty związek? Jak najbardziej, tyle że nie jest to taka łatwa sprawa gdy mamy je zmieszane. Stereoizomery mają takie same właściwości fizyczne i chemiczne - jedynie czasem różnią się na przykład strukturą krystaliczną, lub szybkością reagowania i można próbować rozdzielać je w ten sposób. Zrobił to choćby Pasteur, sortując kryształki soli kwasu winowego, obie bowiem odmiany tego związku najchętniej tworzą kryształy zawierające tylko jedną z nich. Czynią to na tyle chętnie, że chemikowi udało się przeprowadzić bardzo zabawne doświadczenie - do kuwety z nasyconym racematem kwasu, włożył z jednej strony kryształek odmiany R a z drugiej odmiany S. Kryształy stopniowo rosły, przyjmując do sieci krystalicznej cząsteczki tylko jednej odmiany, takiej samej jak w krysztale zarodkowym, aż otrzymał dwa duże kryształy rozdzielonych izomerów.

Inny pomysł polega na zastosowaniu chiralnych reagentów, tworzących związki o wystarczająco różnych właściwościach. Przykładowo związek nasz w mieszaninie R i S jest lekko zasadową aminą, więc traktujemy go na przykład R,R kwasem winowym. Tworzą się nam dwie sole - RR-winian-R-aminy i RR-winian-S-aminy, które bardzo często różnią się rozpuszczalnością, bo chiralne fragmenty różnie ze sobą reagują. Chwytając kogoś prawą dłonią za prawą, możemy go złapać mocniej, niż prawą za lewą, i podobnie jest w tego typu solach.
Dla tych, gdzie oddziaływania są silniejsze, krystalizacja zachodzi chętniej, więc można je wydzielić przez wielokrotne przekrystalizowanie. Inny pomysł polega na tworzeniu estrów o różnej rozpuszczalności bądź temperaturze wrzenia. Bardziej wyrafinowane sposoby wykorzystują reakcje enzymatyczne - na przykład związek o naturze alkoholu przeprowadzamy w ester kwasu tłuszczowego i traktujemy którąś z esteraz - enzymów trawiennych przywykłych do rozkładania połączeń o jednej konfiguracji. Rozkład na przykład R-estru, daje nam selektywnie wyjściowy alkohol, czysty enancjomerycznie, możliwy do oddzielenia przez ekstrakcję. Jeszcze inna metoda polega na zastosowaniu chromatografii kolumnowej, z wypełnieniem zawierającym chiralne związki - na przykład krystaliczną celulozę - jest to jednak metoda bardzo droga.

A może łatwiej byłoby otrzymywać od razu jeden izomer, a nie mieszaninę dwóch? - w tym właśnie cały ambaras, aby nie powstawały oba na raz. Jeżeli poddajemy reakcjom związki już chiralne, i w trakcie reakcji centrum stereogeniczne nie jest naruszane, to otrzymamy selektywnie czysty izomer produktu, przykładowo redukując naturalne R-aminokwasy, otrzymamy R-aminoalkohole a z tych na przykład pierścieniową R-oksazolinę.  Reakcje, gdy wychodząc z substratu o określonej konfiguracji, otrzymujemy produkt o określonej konfiguracji, nazywamy stereoselektywnymi.
Nieco większy problem sprawiają nam reakcje, w których mamy stworzyć nowe centrum, wychodząc ze związku, który takiego nie posiada. Weźmy sobie taki prosty związek jak 1,3-dimetyloheksen, z jednym wiązaniem podwójnym. I poddajmy go reakcji przyłączenia chlorowodoru. Zgodnie z odpowiednimi prawami, wodór przyłączy się z tej strony wiązania, gdzie jest już drugi, a chlor przy grupie metylowej. I powstanie nam centrum stereogeniczne, mające w otoczeniu - przy jednym wiązaniu grupę metylową, przy drugim chlor, przy trzecim pierścień mający grupę metylową za 4 węgle a z czwartej strony ten sam pierścień, ale z grupą metylową za trzy węgle. Tylko jaka będzie konfiguracja? Mieszana.

Gdy atom chloru atakuje wiązanie podwójne, o płaskiej strukturze, może dotrzeć do cząsteczki z dwóch stron - od lewej i od prawej. Ponieważ cząsteczka jest płaska, szanse obu przebiegów są równe, w efekcie otrzymujemy równomolową mieszankę produktów, powstałych a ataku z lewej i z prawej, czyli R:S 1:1 - a zatem racemat.
Wszystkie metody syntezy, mającej zachwiać tą symetrią - a więc syntezy asymetryczne -  opierają się na utrudnieniu dostępu z jednej strony, co może być osiągnięte na różne sposoby. Związek może być zaabsorbowany na powierzchni kryształu - jedna strona będzie zasłonięta i będzie się nam tworzył jeden produkt. Największe jednak zastosowanie mają specyficzne, chiralne katalizatory. Jak mogą działać?
Weźmy sobie cząsteczkę bardzo podobną do powyższej, ale z grupą hydroksylową, a więc 1-metyloheksen-3-ol. Grupa hydroksylowa przy trzecim węglu sama tworzy centrum stereogeniczne. Teraz przed dodaniem substraktu, używamy katalizatora - odpowiedniego kompleksu zawierającego jakiś metal, tak dobranego, że jon metalu może tworzyć wiązania koordynacyjne z elektronami Pi wiązania podwójnego, i wolnymi parami elektronowymi tlenu. Będzie zatem łączył się z cząsteczką od tej strony, z której jest grupa OH

zasłoni więc sobą jedną stronę, umożliwiając dostęp z drugiej strony. W tym przykładzie nowe centrum będzie miało konfigurację R. Jest to przykład wymyślony, ale pokazuje jak takie selektywne reakcje mogą zachodzić.
Prawdziwym majstersztykiem jest stosowana na skalę przemysłową synteza  1R,2S,5R-mentolu, a więc takiego samego związku jak naturalny. Związkiem wyjściowym jest terpenoid mircen, po katalitycznej izomeryzacji zamieniany na R-cytronellal a ten cyklizowany do ostatecznej cząsteczki z trzema centrami chiralnymi. Twórca tej metody Ryoji Noyori w roku 2001 dostał nagrodę Nobla za prace nad asymetrycznym uwodornieniem.

Triazyny to związki organiczne, składające się z sześcioczłonowych pierścieni, w których znajdują się trzy atomy azotu. Możliwe są trzy ich ustawienia - w pozycjach 1,2,3, a więc wszystkie obok siebie; 1,2,4 - dwa obok siebie a jeden z odstępem; oraz 1,3,5 czyli symetrycznie rozdzielone. W moim przypadku zajmuję się 1,2,4-triazyną.
Pochodne triazyn dosyć chętnie tworzą kompleksy z jonami metali, i niektóre z nich mają zdolność do takiego katalizowania reakcji tworzących nowe centrum stereogeniczne, aby powstawał nadmiar jednego z izomerów, a co za tym idzie, zamiast racematu 1:1 otrzymujemy mieszaninę na przykład 6:4, 7:3 czy też najchętniej, ale rzadko 9:1 i wyższe.

A tym, czym będę się zajmował na pracowni, będzie tworzenie chiralnych ligandów do kompleksów mających wywoływać taką selektywność.

środa, 19 czerwca 2013

Ostatnio w laboratorium (29.)

Na ostatnich przed sesją, bo poprawkowych zajęciach z analizy instrumentalnej, badaliśmy metodą spektrofotometryczną stałą trwałości pewnego kompleksu, bispirydyna chlorku kobaltu II ( czyli [py]2Co[Cl]2 ). Jednym z etapów było oznaczenie całkowitej zawartości kobalu - w tym celu wrażliwy na hydrolizę kompleks, mający postać fioletowego proszku:


rozpuściliśmy w kwasie, otrzymując czerwony roztwór, który odparowaliśmy do sucha.
W trakcie odparowania roztwór przybrał kolor intensywnie niebieski, czyniąc to jednak ciekawie - począwszy od ścianek:
Skojarzył mi się, nie wiedzieć czemu, z morską laguną.

Reszta doświadczenie niespecjalnie się udała.

niedziela, 2 czerwca 2013

Kiedyś w laboratorium (28.)

Witam po dłuższej przerwie.

Gdy jeszcze uczyłem się w technikum, jednym z przedmiotów była bioanaliza. Nauczyliśmy się wówczas wykonywania powstawowych badań bakteryjnych. Jedno z nich - z wykorzystaniem pozłoża Chapmana różnicującym bakterie mannitolo-dodatnie od mannitolo-ujemnych - już kiedyś opisywałem. Innym, które zaprezentuję dziś, było badanie z podłożem MacConkeya.
Jest to podłoże agarowe, zawierające laktozę, peptydy powstałe z hydrolizy białek, wskaźnik pH czerwień obojętną, i fiolet krystaliczny.
Podłoże Mac Conkaja z koloniami, od lewej - E. Coli, Salmonella, Proteus

Ten ostatni składnik hamuje wzrost bakterii Gram-dodatnich, jeśli więc badane bakterie nam na nim  wzrosną, możemy już powiedzieć, że są Gram-ujemne. Drugi składnik, będący wskaźnikiem kwasowości, wiąże się z drugą cechą rozróżnianą - zdolnością do trawienia laktozy. Jeśli bakterie mogą trawić laktozę, jak to w powyższym przypadku była w stanie robić kolonia E. Coli, to w wyniku metabolizmu będą zakwaszały podłoże. Czerwień obojętna w odczynie poniżej 6,8 staje się różowo-czerwona, dodatkowo zabarwiając same kolonie.
Jeśli bakterie nie trawią laktozy, to zużywają peptydy wydzielając amoniak, alkalizujący środowisko. W odczynie zasadowym czerwień obojętna jest lekko żółtawa i właściwie nie obserwujemy większych zmian barwy. Poniżej podaję jeszcze zbliżenie kolonii bakterii E. Coli:

poniedziałek, 20 maja 2013

Kiedyś w laboratorium (27.)

Kończąc zajęcia z manganometrii i spuszczając z biurety roztwór nadmanganianu, przyłożyłem do strużki cieczy naelektryzowany długopis:

Strużka się odchyliła. Ot takie zabawy.
A już za parę dni relacja z pierwszej syntezy jaką przeprowadzam w ramach pracowni magisterskiej - będzie to pewna dipodstawiona triazyna. Jak bowiem możecie się domyśleć, dokumentuję fotograficznie każdy etap.

poniedziałek, 13 maja 2013

Ampułkowanie

Wspomnienie z otchłani lat, gdy jeszcze uczyłem się w technikum.

Ampułkowanie jest jednym ze sposobów na przechowanie roztworów, które mogą być wrażliwe na czynniki zewnętrzne. Typów ampułek jest wiele, natomiast na tamtych zajęciach zajmowaliśmy się ampułkami zatapianymi, mającymi postać szklanych banieczek zakończonych rurkę wyciągniętą w kapilarę.


Proces napełniania i zamykania takiej banieczki jest dosyć prosty: bierzemy suchą ampułkę i ogrzewamy banieczkę nad palnikiem. Powietrze wewnątrz rozszerza się i ulatuje rurką:
Jak widzicie, nie mogłem złapać ostrości, toteż w tle widać koleżanki. Gdy już ogrzaliśmy banieczkę, zanurzamy wylot rurki w roztworze - w tym przypadku była to woda destylowana. W miarę ochładzania się, powietrze w rurce kurczy się, tworząc podciśnienie zasysające roztwór do środka:
Gdy już napełnimy banieczkę, wkładamy kapilarny koniec w płomień palnika i zatapiamy. Szkło dosyć łatwo topi się w palniku gazowym, na tych samych zajęciach omawialiśmy też gięcie rurek szklanych, wyciąganie kapilarek i pipet itp.

Tak też otrzymujemy trwale zatopioną ampułkę, pozbawioną dostępu powietrza.Przed zatopieniem można wypełnić ją azotem. Ampułka tego rodzaju jest jednak jednorazowa - aby wydobyć z niej płyn, należy ją rozbić. Ja akurat tego nie zrobiłem - wraz z kawałkami wygiętych rurek zawinąłem ją w papier, po czym włożyłem do pudełeczka wyłożonego gąbką, gdzie jako szczególnego rodzaju pamiątkę przechowuję ją do dziś.


piątek, 10 maja 2013

Ostatnio w laboratorium (26.)

Na jednych z ostatnich zajęć analizy żywności, badaliśmy zawartość alkoholu w przeterminowanym soczku owocowym. Rozcieńczyliśmy próbkę, wlaliśmy do zestawu do destylacji i tak długo grzaliśmy, aż oddestylowało nam ok 100 ml. W destylacie powinien być zawarty cały alkohol z badanego produktu. Zawartość tego alkoholu wyznaczaliśmy piknometrycznie, to jest poprzez pomiar masy cieczy mieszczącej się w takim oto naczynku:

o bardzo dokładnie wyskalowanej objętości. Im większe są różnice gęstości destylatu od wody o tej samej temperaturze, tym więcej alkoholu zawiera. Niestety nasz destylat nie zawierał.

piątek, 3 maja 2013

Kiedyś w laboratorum (25.)

Kiedyś w laboratorium zajmowałem się na zajęciach z chemii fizycznej pomiarem współczynnika załamania światła. Współczynnik ten decyduje o tym jak bardzo światło zmienia kierunek przy przechodzeniu z próżni lub gazu w fazę stałą. Jest natomiast definiowany jako stosunek prędkości falowych w jednym i drugim ośrodku. Gdy światło wpada w taflę szkła, zwalnia o blisko jedną trzecią, w diamencie o ponad połowę, ulegając załamaniu (refrakcji) i częściowemu rozszczepieniu.
Dla fizykochemików oprócz wartości identyfikacyjnej dla kryształów związków, badania refraktometryczne okazują się przydatne w badaniach stężenia roztworów - dla wielu substancji, w szerokim zakresie, wzrost współczynnika załamania roztworu, liniowo zależy od stężenia. Na tym też polegało nasze ćwiczenie.
Przyrządem jakiego użyliśmy był prosty refraktometr Abbego. Jest to prosty przyrząd, w którym badany roztwór wkrapla się w szczelinę między dwoma pryzmatami. Przy odpowiednim ustawieniu względem źródła światła, zachodzi całkowite wewnętrzne odbicie od powierzchni jednego z pryzmatów, co objawia się pojawieniem się granicy między jasnym a ciemnym polem:
Granica w starszych sprzętach jest niestety niezbyt ostra.
Płyn między pryzmatami zmienia przebieg promieni i powoduje, że aby granica przebiegała pośrodku pola widzenia, należy nieco obrócić pryzmat małym pokrętełkiem. Kąt ten zależy od współczynnika załamania, co łatwo sczytać z drugiej skali:

Skala procentowa jest przystosowana do mierzenia zawartości cukru, tu akurat badałem sok owocowy, stąd ok 7,5%

wtorek, 2 kwietnia 2013

Spektrofotometryczne oznaczanie kofeiny w kawie.

Kolejny raz zajmowałem się na zajęciach oznaczaniem kofeiny, ale tym razem w całkiem inny sposób. Poprzednio, jak to pisywałem, wyodrębniałem kofeinę z naparu herbacianego techniką SPE a zawartość wyznaczałem chromatograficznie przez porównanie ze wzorcem. Tym razem postąpiłem jednak inaczej.

Kawa, to napój robiony ze zmielonych nasion krzewu kawowego. Najstarsze wzmianki o niej pochodzą dopiero z końcówki średniowiecza, bez wątpienia jednak musiała być znana od dawna w plemionach górzystej Etiopii. Krzew owocuje czerwonymi jagodami o dużej pestce, która jest wyłuskiwana i suszona (w niektórych łagodnych odmianach pestki poddaje się enzymatycznej fermentacji podobnie jak w przypadku herbaty).  Pestki, nazywane teraz ziarnem kawowym, są następnie poddawane procesowi palenia - przypiekanie w wysokiej temperaturze powoduje częściową degradację substancji o roślinnym posmaku. Jednak powodem dla którego kawę się praży, jest nadanie jej właściwego smaku i zapachu.
W pierwszej fazie następuje karmelizacja cukrów prostych i skrobi w ziarnie; dalsze pieczenie powoduje, że cukry zaczynają reagować z białkami w ciągu skomplikowanych reakcji Maillarda. Powstające produkty tych często nieprzewidywalnych reakcji odpowiadają za silny i zróżnicowany aromat i smak ostatecznego produktu. Czas palenia i temperatura wpływają na stopień przemiany a tym samym na siłę i bukiet aromatu, toteż zależnie od techniki wyróżnia się różne odmiany kawy - na przykład kawa lekka (New England) była pieczona do momentu pierwszego pęknięcia ziarna. Pestki mogą być podpiekane długo w niskich temperaturach, lub szybko w wysokich; palone dwa razy w różnych temperaturach; szybko schładzane lub powoli. To wszystko wpływa na jakość ostatecznego produktu.
Kawa bezkofeinowa jest otrzymywana przez ekstrakcję nadkrytycznym dwutlenkiem węgla zmielonej kawy zielonej. Kawa rozpuszczalna przez zagęszczanie i liofilizację naparu. Ja sam osobiście nie piję kawy.

Spektrofotometria UV/VIS, podobnie jak innozakresowe techniki tego typu, opiera się na jednej podstawowej zasadzie - prawie Lamberta-Beera.W zasadzie są to dwa prawa dotyczące absorpcji w roztworach, które można połączyć w jedno. Zanim je objaśnię przejdę jednak do podstaw.
Różne ciała oddziałują ze światłem w różny sposób. Mogą całkowicie nie przepuszczać go przez siebie, mogą przepuszczać ale częściowo albo mogą przepuszczać całkowicie, jedynie załamując je zależnie od kształtu i gęstości. Aby jakoś ilościowo to opisać, porównujemy natężenia wiązki która wchodzi do ciała i wiązki która przezeń przechodzi, wedle rysunku:

Transmitancja (T) to po prostu stosunek natężeń, często wyrażany w procentach, mówiący jaka część światła przenika przez ciało. Częściej jednak stosuje się wartość nazywaną Absorbancją, będącą ujemnym logarytmem transmitancji, która jest o tyle wygodniejsza, że absorbancje różnych substancji w roztworze, można wprost dodawać do siebie tworząc A. ogólną.

Znając te podstawowe prawidła, możemy zrozumieć w jaki sposób próbowano powiązać absorpcję światła przez ciała, z ich rozmiarami lub stężeniem.
Na samym początku, w roku 1729, Pierre Bougher stwierdził, że natężenie światła przechodzącego przez ciało, maleje wykładniczo z jego grubością. A więc czym grubsza warstwa pochłaniająca, tym mniej światła przez nią przechodzi. Kilka dekad po nim to samo prawo opublikował niejaki Lambert. Z matematycznego opisu tego prawa wymikało, że różne substancje muszą posiadać charakterystyczny dla siebie wspólczynnik mówiący o ich zdolności do pochłaniania światła.
Następnym badaczem był August Beer, który badając absorpcję światła przez roztwory tych samych substancji, w naczyniu tej samej grubości, ogłosił w 1852 roku że absorpcja w takim przypadku zależy z grubsza liniowo od stężenia.
Jeśli uznać za ciało pochłaniające warstwę zabarwionego roztworu, to oba prawa można złożyć w jedno mówiące, że absorbancja roztworu zależy liniowo od - grubości warstwy roztworu l ; stężenia C ; i własnej zdolności absorpcyjnej ε , co określa się wzorem:

A = ε l C
Jest to prawo raczej przybliżone, z odchyleniami dla stężeń bardzo małych i bardzo dużych, jest jednak wystarczająco użyteczne, aby wykorzystać je w chemii analitycznej. Już po koniec XIX wieku zbudowano pierwszy użyteczny przyrząd pozwalający, w oparciu o te prawa, porównać stężenia roztworów - Kolorymetr Duboscq:

Było to proste urządzenie - do jednej z dwóch, jednakowo jasno podświetlonych rurek wlewano roztwór wzorca o znanym stężeniu, do drugiej roztwór badany i do obu wprowadzano szklane pręty. Patrząc na natężenie światła przechodzącego opuszczano bądź jeden, bądź drugi pręt dopóty, aż jasności po obu stronach się zrównały. Głębsze zanurzenie pręta, zmniejszało grubość warstwy między dnem rurki a końcem pręta, a tym samym grubość warstwy roztworu przez jaką przechodziło światło. Ze znanego stężenia roztworu wzorcowego i stosunku grubości warstw roztworów, można było wyliczyć stężenie nieznanego roztworu.
Urządzenie stało się pierwszym przyrządem analitycznym, używanym na przykład w medycynie - po przeprowadzeniu odpowiednich reakcji, zamieniającej składniki moczu lub osocza w barwne produkty, można było oznaczać zawartość białka w moczu lub cukru we krwi.

Współcześnie jednak technika znacznie ułatwiła nam pomiar i zwiększyła jego dokładność, używając fotometrów mierzących natężenie wiązki przechodzącej. Takiego też przyrządu używaliśmy na ćwiczeniu.

Pierwszym krokiem dla wykonania oznaczenia było wybranie kawy - na stanie laboratorium była tylko rozpuszczalna Pedros firmy Ellite:

Z niej odważyliśmy ok 0,05 g w trzech próbkach i zalaliśmy 10 ml gorącej wody, tworzac napar:

zawierający całą kofeinę, ale też resztki białek, polifenole i inne silnie zabarwione substancje, które przeszkadzałyby w oznaczaniu. Należało więc tą kofeinę od całej reszty oddzielić, jednak zamiast techniki SPE, jakiej używałem na ćwiczeniu z herbatą, skorzystałem z techniki bardziej klasycznej - ekstrakcji rozpuszczalnikiem organicznym.
Napar po przestudzeniu wlewaliśmy do rozdzielacza i dodawaliśmy chlorku metylenu - bardzo lotnego rozpuszczalnika. Zamiast jednak zazwyczaj wykonywanego silnego wstrząsania, jedynie "przelewaliśmy" ciecze we wnętrzu, pozwalając się im niezbyt gwałtownie przelewać. Kofeina jest w chlorku metylenu stosunkowo dobrze rozpuszczalna, ale ciemne barwniki kawy także; ostrożne mieszanie miało jak najbardziej zmniejszyć ten niepożądany efekt.

Gdy już wytrząsnęliśmy pierwszą porcję odlewaliśmy cięższy roztwór organiczny i do  tej samej raz ekstrahowanej cieczy dolewaliśmy następną porcję rozpuszczalnika. A gdy podobnie przemieszaliśmy je i odlaliśmy chlorek metylenu, powtórzyliśmy ekstrakcję po raz trzeci. Chodziło po prostu o to, aby wyciągnąć z naparu praktycznie całą kofeinę.
Każdy napar z każdej próbki ekstrahowaliśmy osobno, zbierając warstwę organiczną do trzech osobnych próbówek. Jak widać nie zawsze udawało się uniknąć zanieczyszczenie naparem wodnym. Ostatnie kropelki odciągnęliśmy pipetką


Mając już roztwór zawierający kofeinę, należało nią z niego wyodrębnić - toteż przelaliśmy go do porcelanowej parownicy i odparowaliśmy niskowrzący rozpuszczalnik na łaźni piaskowej. Tak, wiem, że to mało oszczędny sposób, ale tak było w przepisie. Gdy rozpuszczalnik wrzał zauważyłem na jego powierzchni ciekawe zjawisko "pływającej kropli" - czy też raczej pół-antybańki.
Normalna bańka składa się z gazu oddzielonego od gazu zewnętrznego cienką błonką cieczy, napiętą przez detergent powierzchniowo czynny. W szczególnych warunkach można jednak stworzyć układ dokładnie odwrotny - kropla cieczy oddzielona od reszty błonką powietrza. Taka antybańka unosi się swobodnie wewnątrz roztworu.
Zjawisko jakie obserwowałem stanowiło coś pośredniego - kropelka cieczy unosiła się na powierzchni roztworu, będąc od niego oddzielona błonką powietrza, ale tylko na spodniej stronie. Powietrze to zmniejsza tarcie między kroplą a resztą roztworu na tyle, że kropla bardzo szybko śmiga począwszy od miejsca powstania. Jest to zjawisko obserwowane bardzo często, widziałem je na kałużach do których wpadał strumień deszczówki, na mieszanej herbacie, u podnóża wodospadów a nawet wewnątrz muszli klozetowej podczas załatwiania małej potrzeby fizjologicznej. Także gdy kran w laboratorium kapie na cienką warstwę wody na dnie zlewów, też widzę kropelki szybko śmigające po tej warstewce.
Te "połkrople" czy też jak ja nazywam, pływające krople, na powierzchni wrzącego chlorku metylenu zaciekawiły mnie dlatego, że spontanicznie rosły - najwyraźniej na niestabilnej powierzchni w warunkach minimalnej lepkości, małe porcje cieczy przechodziły do kropli, powiększając ją.

Gdy cały rozpuszczalnik odparował, na dnie parowniczki pozostał osad, zawierający kofeinę i zanieczyszczenia:

Osad rozpuszczaliśmy w niewielkiej ilości wody, przelewaliśmy ją do kolby miarowej i po uzupełnieniu do kreski otrzymywaliśmy 100 ml roztworu kofeiny z kawy. Czynności wykonaliśmy osobno dla każdej próbki, uważając aby ich nie pomieszać. Z powodu zanieczyszczeń roztwór był lekko zabarwiony:

Niestety nasz spektrofotometr akurat się zepsuł i oznaczenie musieliśmy odłożyć na następne ćwiczenia.
Na kolejnych ćwiczeniach zaczęliśmy od przygotowania serii roztworów wzorcowych, o stężeniach kofeiny zmieniających się od 0 do 0,9 mikromola/ml, następnie wybraliśmy jeden z nich i po przelaniu do kwarcowej kuwety mierzyliśmy zależność absorbancja/długość foli, aby znaleźć warunki w których pochłanianie światła jest największe. W naszym przypadku była to fala 279 nm.

Gdy długość fali była już ustalona, reszta oznaczania była prosta - najpierw zmierzyliśmy absorbancje kolejnych roztworów wzorcowych a następnie naszych roztworów otrzymanych z kolejnych próbek. I już tutaj pojawił się pierwszy zgrzyt - absorbancja próbek badanych wyszła większa niż roztworów wzorcowych i powyżej 1, a więc pochłanianie w tej długości fali było bardzo silne. Nie lepiej było gdy doszło do opracowywania wyników.
Najpierw wykonałem wykres zależności stężenie/absorbancja, nie wyglądał zbyt dobrze:

Uznałem więc że wartość w punkcie 2 to błąd gruby i usunąłem go, uzyskując ładną linię prostą:

wraz z równaniem tejże prostej. Wiedząc że Y to absorbancja, a X to stężenie, mogłem wyliczyć z tego wzoru stężenie kofeiny w trzech roztworach badanych - o ile oczywiście nadal stosowała się do nich zależność prostoliniowego odcinka krzywej.
Po przeliczeniu otrzymałem stężenie kofeiny w roztworach w mikromol/ml. Znając objętość roztworów przeliczyłem stężenie na ilość a tą, znając masę molową kofeiny, na masę. Znając teraz masy odważonych próbek kawy i masy wyliczonej kofeiny w nich zawartej, mogłem policzyć procentową zawartość kofeiny w kawie. Po uśrednieniu zbliżonych wyników wyniosła ona 4,28%

Siła kawy jest zatem niczego sobie, tyle tylko, czy jest to wartość realna? Jak wynikałoby z badań, w większości przypadków kawy dostępne na rynku zawierają od 1 do maksymalnie 2,5% kofeiny [1] zatem w moim przypadku wynik jest dwa razy większy.
Co mogło być źródłem błędu? Jakiś wpływ może mieć błąd ujemny, związany z niecałkowitą ekstrakcją kofeiny, ale zdecydowanie większy wpływ ma błąd dodatni wywołany ciemnymi zanieczyszczeniami z pierwotnego ekstraktu. Ostrożna ekstrakcja miała pomóc ich uniknąć, ale najwyraźniej nie była wystarczająca. We wcześniejszym ćwiczeniu z herbatą kofeina została oddzielona i zatężona przy pomocy techniki SPE a właściwa analiza była przeprowadzane przez porównanie powierzchni pod wykrytym przez detektor pikiem kofeiny z próbki i z roztworu wzorcowego. Zatem przed dojściem do detektora kofeina została oddzielona od zanieczyszczeń i sygnał pochodził tylko od niej.
Wiem że inne grupy badające tą kawę otrzymały niższe wartości, rzędu 2,5-3% więc widocznie etap ekstrakcji wykonały ostrożniej. Bywa.

------------
[1] Marcin Frankowski, Artur Kowalski, Agnieszka Ociepa, Jerzy Siepak, Przemysław Niedzielski, Kofeina w kawach i ekstraktach kofeinowych i odkofeinizowanych dostępnych na polskim rynku, BROMAT. CHEM. TOKSYKOL. – XLI, 2008, 1, str. 21 – 27

piątek, 29 marca 2013

Miareczkowanie kompleksometryczne z PAN

Dawno już nie wrzucałem nowych filmów z laboratorium - zaległość niniejszym nadrabiam.

Podczas zajęć ze spektrofotometrii jednym z elementów ćwiczenia dotyczącego oznaczania miedzi obok kobaltu, było miareczkowanie roztworów wzorcowych, aby określić dokładnie ich stężenie. Ponieważ zmiany koloru zachodziły bardzo wyraźnie, nie omieszkałem utrwalić tego na filmie, który podam niżej.
Zanim jednak go obejrzycie, muszę objaśnić coś na temat samej metodyki takiego oznaczania.

Miareczkowanie to jedna z najprostszych technik analizy ilościowej. Zasadniczo polega na przeprowadzaniu reakcji między roztworem składnika jaki mamy oznaczać, nazywanego analitem, i roztworem substancji, która z nim reaguje, nazywanym titrantem. W miarę dodawania tej substancji, ilość naszego badanego składnika maleje, aż do całkowitego zaniku. Jeśli będziemy wiedzieli jaka objętość roztworu titranta była potrzebna do osiągnięcia tego punktu i będziemy dokładnie znali jego stężenie, to wiedząc w jakim stosunku ze sobą reagują będziemy mogli wyliczyć ilość analitu w badanym roztworze z całkiem przyzwoitą dokładnością.
Teraz jedynym problemem jest to, jak wyznaczyć punkt całkowitego przereagowania. W technikach alkacymetrycznych, gdzie oznaczane są kwasy lub zasady przy pomocy zobojętniającego je titranta, używa się wskaźników pH, które zmieniają barwę ze zmianami odczynu. Na przykład bezbarwna w kwasach fenoloftaleina, w zasadach staje się malinowa, a oranż metylowy z żółtego staje się pomarańczowy. W technikach redoksymetrycznych, gdzie badana substancja jest utleniana lub redukowana, wskaźnik zmienia barwę ulegając którejś z tych reakcji.
W przypadku kompleksometrii analizowana substancja tworzy z dodawanym związkiem kompleks - połączenie jonowe z przeniesieniem pary elektronowej. Substancją tą są zwykle sole metali, a związkiem kompleksującym cząsteczka zawierająca wolne pary elektronowe - a więc posiadająca tlen, azot lub siarkę. Najbardziej popularnym takim związkiem jest EDTA - kwas etylenodiaminotetraoctowy.
Tworzy on z kationami metali bardzo trwałe kompleksy połączone przez kilka wiązań - chelaty - łącząc się w stosunku 1:1. Jest jednak niestety bezbarwny i dlatego aby móc wyłapać punkt końcowy, należy użyć odpowiedniego wskaźnika. Pomysł działania takich wskaźników opiera się na prostej zasadzie - związek  tworzący silniejszy kompleks wypiera ten słabszy. Jeśli nasz wskaźnik będzie tworzył z oznaczanym metalem zabarwiony kompleks, a wolny będzie bezbarwny lub zabarwiony całkiem inaczej, to po dodaniu EDTA do roztworu analitu ze wskaźnikiem i jego wyparciu, roztwór zmienia kolor. Jeden taki przypadek już omawiałem - gdy podczas badania wody mineralnej miareczkowałem wapń z czernią eriochromową, zmieniającą kolor z fioletowego na ziebieski.

Jak rzecz się miała w tym przypadku?
Wskaźnikiem był 1-(2-pirydyloazo)-2-naftol. Ten prosty związek azowy ma silne, pomarańczowe zabarwienie:
Po dodaniu kilku kropli do lekko zasadowego (bufor octanowy) roztworu soli miedzi zmienił jednak barwę podczas tworzenia kompleksu. Instrukcja podawała, że powinien być ciemnoróżowy, zaś w punkcie końcowym zmienić barwę na żółtą, ale rzecz wyglądała w naszym przypadku nieco inaczej, zresztą sami zobaczcie:

Całkiem ładny fiolet zamienił się w zieleń.

poniedziałek, 25 marca 2013

Kiedyś w laboratorium (24.)

Na zajęciach z chemii nieorganicznej mieliśmy klasyczne doświadczenie z reakcją metalicznego sodu z wodą. Kawałeczek sodu wrzucono do próbówki zawierającej wodę z fenoloftaleiną i warstewkę oleju parafinowego. Gdy kawałek sodu dotknął wody, zaczęła się burzliwa reakcja, w wyniku której fenoloftaleina zabarwiła się, a metal stopił w metaliczną kulkę wielkości łebka od szpilki. Ponieważ stopiony sód okazał się nieco lżejszy od oleju parafinowego, wypłynął i zakończył reakcję takim oto widokiem:
W większej (wręcz gigantycznej) skali polecam ten film, na którym po wojnie amerykanie niszczą kilka ton sodu z niemieckich bomb zapalających, wrzucając go do morza.