informacje



Pokazywanie postów oznaczonych etykietą chemia i życie. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą chemia i życie. Pokaż wszystkie posty

wtorek, 31 grudnia 2013

Kolory ognia - czyli chemia fajerwerków

Być może obserwując fajerwerki strzelające podczas poprzednich Sylwestrów bądź nawet teraz już wypróbowywane przez co niektórych niecierpliwców, mogliście się zastanowić jak to się właściwie dzieje, że iskry płomieni mogą być zafarbowane na jakiś określony kolor. A no, proszę państwa, to już sama chemia działa.


Fajerwerki jako pierwsi wymyślili Chińczycy, niedługo po odkryciu prochu, bo już w VII wieku naszej ery, początkowo w formie zabawki - najpopularniejszym typem były rurki z których wysypywały się kaskady iskier. Szybko wynaleziono też rakiety które znalazły zastosowanie w wojnie - długie, drewniane rakiety z rzeźbioną głową smoka płoszyły konie i ludzi. Podczas bitwy z Mongołami zastosowano też lotne strzały z przymocowanymi małymi rakietkami zwiększającymi zasięg strzału.
Do europy proch trafił w Średniowieczu lecz fajerwerki nie osiągnęły tak dużej popularności jak w swej ojczyźnie i aż do XIX wieku nie były powszechnie dostępne. Przez długi czas nie umiano również wpływać na kolor spalania, mogły być żółte lub białe, mniej lub bardziej jasne. Zmieniło się to wraz z odkryciami chemików, iż pierwiastki potrafią zabarwiać ogień.
Jak z pewnością pamiętacie ze szkoły, atomy składają się z jądra i elektronów w przestrzeni wokół nich. Wprawdzie mechanika kwantowa nieco komplikuje utrwalony obraz małych kulek na orbicie większych kulek, ale takie przybliżenie jest w sam raz dobre aby wytłumaczyć zachodzące zjawiska.
Elektrony wokół jąder grupują się w powłoki zawierające ich określoną liczbę, każda oddzielona jedna od drugiej niewielkim odstępem, coraz dalej aż do ostatniej powłoki walencyjnej. W atomie obojętnym rozkład elektronów w powłokach jest taki, że posiadają najniższą możliwą energię. Jest to stan podstawowy. Nieco inaczej jest jeśli nadamy mu energię, na przykład podgrzewając w płomieniu. Energia przerzuci część elektronów na wyższą powłokę, co jest jednak dla atomów stanem nietrwałym. Bardzo szybko elektrony powracają na swoj miejsce, wypromieniowując energię, ale nie jako ciepło lecz jako światło określonej częstotliwości.

Każdy pierwiastek po wzbudzeniu emituje światło innej długości fali w serii linii widmowych. Najintensywniejsza linia widmowa powoduje że cały płomień w którym rozprowadzone są pary tego pierwiastka, świeci określonym kolorem. W podobny sposób na wzbudzenie reagują jony a także całe molekuły
Zatem aby zabarwić fajerwerki, musimy dodać do nich stosunkowo lotną sól metalu, barwiącego płomień na określony kolor.

Masa palna zawiera zatem przede wszystkim utleniacz, a więc różne saletry, chlorany itp, paliwo czyli węgiel, cukier czy inne związki organiczne, czasem siarkę, dodatki kontrolujące prędkość spalania (i zapobiegające przedwczesnej eksplozji) sól metalu barwiącego i zazwyczaj źródło chloru. Chlorki metali są zwykle dosyć lotne, i dają intensywniejsze kolory, częściowo dzięki emisji cząsteczki chlorku, dlatego taki dodatek pomaga w utrzymaniu barwy, zwykle jest to kauczuk chloroprenowy czy PVC, ewentualnie salmiak.


Czerwony
Istnieją dwa pierwiastki nadające się do barwienia płomieni na czerwono, dające różne odcienie. Sole Strontu, lekkiego metalu alkalicznego,  dają kolor intensywny, ciemny. Zwykle stosowany jest w formie chlorku lub węglanu; jako azotan strontu pojawia się w znanych wszystkim ze stadionów czerwonych racach.
Kolor jasnoczerwony nadają ogniowi sole litu, są jednak raczej rzadziej używane, zwykle w mieszankach dla uzyskania intensywnego pomarańczu. Zazwyczaj w formie węglanu lub chlorku.

Żółty
Kolor żółty jest bardzo łatwy do uzyskania, tak bardzo że trzeba uważać aby kompletnie nie zamaskował sobą właściwych kolorów. Czynnikiem jest tutaj sód, wszechobecny w ludzkim otoczeniu jako składnik potu. Zazwyczaj używany jest azotan sodu, który jest mało higroskopijny, przez co fajerwerk nie tak łatwo wilgotnieje; można też użyć zwykłej soli kuchennej lub sody oczyszczonej. Czasem używany jest kriolit, czyli fluoroglinian sodu, mający tą zaletę że jest nierozpuszczalny i zupełnie niehigroskopijny. Intensywne światło sodu zagłusza inne kolory, dlatego pirotechnicy starają się nie zanieczyścić nim swych mas palnych

Pomarańczowy
Pomarańczu przyda iskrom pospolity wapń zwykle w formie siarczanu (gips) lub chlorku, bardziej intensywny kolor otrzymuje się dodając domieszki pierwiastków barwiących żółto i czerwono.

Zielony
Kolor ten pojawia się w oparach kilku pierwiastków, lecz zastosowanie znalazł ostatecznie Bar, w formie węglanu i chlorku. Specyficznym przypadkiem jest azotan baru - z dodatkami chlorującymi daje mało intensywną zieleń, bez nich zachowuje się jak zwykła saletra i bardzo często jest używany po prostu jako utleniacz, na przykład w zimnych ogniach

Niebieski
Na niebiesko rakietę zabarwią sole miedzi, ale aby uzyskać taki efekt temperatura plomienia musi być odpowiednio wysoka, w przeciwnym razie metal da mało wyraźną, jasną zieleń. Najlepszy jest tutaj chlorek miedzi I, mogą być też użyte węglany a nawet tlenki z dodatkami chlorującymi. Intensywny odcień daje też zieleń paryska, czyli arsenian-octan miedzi, toksyczny związek.

Indygo
Szczególnie ciemny odcień niebieskiego, określany jako Indygo, dają sole cezu, silnie alkalicznego, rzadkiego metalu. Używany jest tutaj właściwie tylko azotan cezu. Fajerwerki takie muszą ciekawie wyglądać w podczerwieni, metal bowiem emituje bardzo intensywną linię widmową właśnie w tym zakresie, czego niestety gołe oko nie zobaczy.

Fiolet
Odcienie fioletu i różu nada fajerwerkom potas, ale w nieobecności sodu. Dość intensywny kolor można uzyskać stosując azotan rubidu, jest to jednak rzadkie zastosowanie. Najczęściej jednak używa się mieszanki czerwonych związków strontu i niebieskich związków miedzi.

Ferdinand du Puigaudeau, Fajerwerki w porcie
Pierwiastki te niekoniecznie nadają się do zabarwiania innych typów płomieni - płomień węglowodorowy świeci głównie dzięki rozżarzonym cząstkom węgla, których blask może zagłuszać efekt emisyjny. Sprawdzałem że w przypadku świecy sól miedzi powoduje, że zielonkawe zabarwienie widoczne jest właściwie tylko w zewnętrznym płaszczu płomienia i końcówce, podobne efekty można zaobserwować w ognisku, po wrzuceniu kolorowych, zadrukowanych pism, gdzie związki miedzi i baru (użytego jako baryt w charakterze wypełniacza masy papierowej) podbarwiają zielonkawo same szczyty ogników.
Efekt możne być jednak wyraźny w przypadku płomieni alkoholi i niektórych paliw, dających ogień raczej niebieski z żółtą końcówką niż cały żółty. Dobrym sposobem zabarwienia płomienia alkoholu jest dodanie do niego kwasu bornego i lekkie ogrzanie, można też dodać do tej mieszanki nieco kwasu siarkowego. W takich warunkach tworzą się estry borowe, dosyć lotne i chętnie tworzące ciemnozielony płomień. W przypadku innych metali podejrzewam, że efekt mogłoby dać nasycenie chlorkiem metalu samego knota, jako że sole są mało rozpuszczalne w alkoholu. Możliwe jest więc zrobienie lampek spirytusowych w różnych kolorach.
Zastanawiam się czy możliwe by było zmieszanie oddestylowanego estru borowego z samym woskiem i zrobienie świecy, ale podejrzewam że efekt byłby jednak słaby

Użyte pierwiastki po spaleniu się zostają uwolnione do atmosfery w formie lotnych popiołów. Niestety często używany w fajerwerkach bar jest pierwiastkiem trującym, zwłaszcza dla ryb. Iluminacje sylwestrowe są jednym z największych źródeł baru w powietrzu, na szczęście jednorazowym. Używając zimnych ogni zwróćcie uwagę na etykiety gdzie radzi się po użyciu umyć ręce - to właśnie z powodu azotanu baru stosowanego jako utleniacz.
Związkiem trującym dla ryb jest też często używany nadchloran, który u ludzi jest związkiem wolotwórczym. Z tego też powodu poszukuje się bardziej ekologicznych formuł. Dosyć ciekawym pomysłem jest zastosowanie kompleksów tetrazoli z metalami, które zawierając śladowe ilości metali intensywnie świecą przy silnym ogrzaniu, zanim całkiem się spalą. Natomiast nadchlorany można zastępować nie trującymi nadjodanami, dającymi dodatkowo żółty kolor spalania.

sobota, 14 grudnia 2013

Zapalniczka i zimne ognie

Na sylwestra, na święta, dla zabawy. W noc ciemną bierzemy do ręki pałeczki zimnych ogni i zapalamy, na przykład zapalniczką. Ale nie zawsze zauważamy że zapalenie zapalniczki i zapalenie zimnych ogni, ma ze sobą coś wspólnego.

To co popularnie nazywamy zimnymi ogniami, to pałeczki z cienkiego drucika pokrytego masą pirotechniczną. Podstawowy skład jest dosyć prosty - utleniacz, opiłki metalu i lepiszcze. Dokładne składniki zależą już od producenta, zwykle w charakterze utleniacza stosuje się saletrę potasową lub azotan baru albo też chloran potasu, zaś metalem są drobne opiłki żelaza z domieszką magnezu lub glinu, natomiast za lepiszcze służy klej dekstrynowy. Dlaczego zatem po zapaleniu takiej mieszanki, zaczynają strzelać z niej jasne iskry?

Mieszanka użyta w zimnych ogniach jest bardzo podobna do prochu, i działanie jest w pewnym stopniu podobne. W wysokiej temperaturze, utleniacz rozkłada się, przekazując tlen cząstce metalu. Ten utlenia się i rozgrzewa aż do temperatury białego żaru, zaś cząstki na zewnętrznej powierzchni są wyrzucane gazami z rozkładu utleniacza i spalenia lepiszcza. Iskra taka trwa dosyć krótko, zwykle gasnąc i stygnąc po przeleceniu kilkunastu centymetrów, stąd drobne iskierki zwykle nie wywołują oparzeń ręki, i dlatego też otrzymały taką popularną nazwę. Z drugiej strony wyraźne czerwone świecenie pręcika powinno nam uświadomić, że fajerwerk ten jest jednak bardzo gorący, upuszczony na dywan lub ubranie może wypalić w nim dziurę.
Inną sytuacją gdy obserwujemy iskrzenie drobnych cząstek metalu, jest cięcie bądź szlifowanie metalu za pomocną szybko obrotowych narzędzi. Powstające wówczas snopy iskier, to właśnie rozżarzone opiłki utleniające się na powietrzu. Zachowanie się metalu podczas obróbki jest w dużym stopniu zależne od składu, jedną z technik prostego określenia z jakiego typu stopem mamy do czynienia, jest metoda iskrowa, polegająca na skrzesaniu iskier szlifierką. Stal niskowęglowa, miękka, daje iskry krótkie i nie rozgałęziające się, stal twarda o wysokiej zawartości węgla daje iskry pękające w powietrzu na snopy drobniejszych iskierek, stopy tytanu dają białe, oślepiająco jasne iskry.

Dlaczego jednak, skoro brak tu jak w przypadku zimnych ogni utleniacza, opiłki metalu iskrzą przy takiej obróbce? Energii dostarcza głównie ciepło tarcia, wystarczające aby metal zaczął się żarzyć, ponadto zaś jeśli drobina metalu jest odpowiednio mała, może zapalić się w powietrzu samoistnie wskutek powierzchniowego utleniania. Substancje samorzutnie zapalające się na powietrzu, nazywamy piroforycznymi, i są to głównie metale aktywne, dla których termodynamicznie trwała jest forma utleniona i które nie ulegają pasywacji. Efekt taki może dać na przykład pył magnezu lub tytanu, ale stosunkowo znanym przykładem jest piroforyczne żelazo:

Można je dość łatwo otrzymać, przez termiczny rozkład szczawianu żelaza w wąskiej próbówce. Powstający przy rozkładzie dwutlenek węgla wypiera powietrze i zapalenie się następuje dopiero po wytrząśnięciu pyłu. Wiele pyłów metali zapala się po zainicjowaniu iskrą, co może przybrać formę eksplozji tak jak wybuch pyłu węglowego. Tragicznym tego przykładem była eksplozja pyłu aluminium w Gorzowskich zakładach Italian Look w 2001 roku, gdy na hali szlifowania części ekspresów do kawy silny wybuch poparzył pracowników - pięciu zmarło.[1] Wśród winnych znalazła się też zakładowa instruktorka BHP które tłumaczyła w sądzie, że nie wiedziała, że pył metalu może wybuchnąć.

Wróćmy jednak do iskier krzesanych przez metal. Powstawanie takich gorących cząstek w wyniku uderzenia o metal twardym przedmiotem, miało w minionych wiekach bardzo pożyteczne zastosowanie w krzesiwkach do krzesania ognia.

Krzesiwo było kawałkiem twardego żelaza, zazwyczaj o wygiętym kształcie, który energicznie uderzano w kamień, zazwyczaj krzemień. Powstające iskry odskakiwały w kierunku krzesania, spadając na hubkę, która będąc łatwopalna chętnie zajmowała się od rozżarzonych okruchów. Jeśli dmuchając udało się rozdmuchać hubkę do pojawienia się ognia, można było dokładać listki, słonki, gałązki itp. aż do ogniska. Hubka będąca rozpałką, stanowiła gąbczasty, częściowo zdrewniały miąższ grzybów nadrzewnych, zwłaszcza hubiaka pospolitego (o starożytności metody świadczy jego nazwa łacińska Fomes fomentarius znacząca dosłownie zapałka zapalająca), nasycony saletrą i rozdrobniony; czasem w zastępstwie używano częściowo zwęglonych strzępków tkaniny lub roślin. Zamiast żelaza użyty mógł być zbity piryt, którego cząstki spalają się w powietrzu, skąd zresztą wziął swą nazwę (pyrites czyli iskrzący).
Sposób ten znany od starożytności, stosowany był aż do XIX stulecia gdy zaczęto stopniowo wprowadzać zapałki, choć zapewne gdzieniegdzie używano go u początków minionego wieku. Tą prostą metodę krzesania udało się zautomatyzować, tworząc mechanizm skałkowy, który już w XVII wieku zastosowano w muszkietach i pistoletach, to zaś zmieniło oblicze wojny i obronności. Mechanizm składał się z dwóch podstawowych części - kurka, w którego szczękach tkwił kawałek krzemienia, oraz krzesiwka, mającego postać blaszki w kształcie litery L na małym zawiasie. Naciśnięcie spustu uwalniało kurek, który napinany sprężyną uderzał w sterczącą blaszkę krzesiwa. To odskakiwało, przez pewien czas intensywnie trąc o krzemień i krzesząc iskry snopiące na odsłoniętą panewkę z prochem.
I choć nikt tego wówczas nie wiedział, mechanizm był pierwowzorem dla zapalniczki, bardzo w późniejszym czasie przydatnego urządzenia.

Pierwsze próby zapalania takim mechanizmem czegoś więcej niż prochu, pojawiały się już dawno - po prostu kładziono na panewkę kawałek hubki. Pomysł jednak najwyraźniej nie był rozwojowy, skoro przenośne konstrukcje bardziej przypominające zapalniczki pojawiają się dopiero w XIX wieku, gdy chemik Dobereiner wynajduje chemiczną zapalarkę - był to mały aparat Kippa, w którym cynk reagował z kwasem siarkowym. Powstający wodór kierowano dyszą na gąbczastą platynę, na tyle silnie katalizującą utlenianie wororu, że zapalał się on niedużym płomieniem. Była to konstrukcja kłopotliwa z uwagi na rozmiary i niebezpieczny kwas.
W połowie tegoż wieku pojawiły się mechanizmy oparte na stalowym kole ciernym krzeszącym iskry na knot nasączony alkoholem, były to jednak urządzenia zawodne z uwagi na wcale nie tak łatwe skrzesanie iskry. Przełom nastąpił dopiero w 1903 roku, gdy Auer von Welsbach, trochę dziś zapomniany wynalazca kilku urządzeń oświetleniowych* odkrył szczególne, piroforyczne właściwości żelazoceru - stopu żelaza z mieszaniną lantanowców otrzymywanych z piasku monacytowego. Był to materiał na tyle łatwo dający dobrze zapalające iskry, że wyposażone w niego zapalniczki stały się poważnym konkurentem zapałek.

Współczesne zapalniczki iskrowe zawierając mechanizm cierny, w którym kamień zapalniczkowy (pręcik żelazoceru lub masa krzemianowa z pyłem żelaza) przyciskany sprężynką do karbowanej powierzchni stalowego kołka, krzesze iskry po szybkim obróceniu tymże kółkiem. Te zapalają gaz uwalniany przez zaworek po przyciśnięciu stopki, bądź opary benzyny w zapalniczkach z knotem nazywanych Zippo.
Lantanowce, nazywane metalami ziem rzadkich, są pierwiastkami mającymi bardzo szerokie zastosowanie w technologii, w tym w fotowoltaice, z tego też powodu są drogie. Jednak stop używany w zapalniczkach jest dosyć tani - na koszt czystego pierwiastka składa się głównie koszt oczyszczania, które ze względu na to, że lantanowce występują na raz w tym samym minerale i mają niezwykle podobne właściwości chemiczne jest dość trudne.
Obecnie coraz częściej ten typ wypierany jest przez zapalniczki piezoelektryczne, gdzie czynnikiem zapalającym jest iskra elektryczna wytworzona przez pewne ściskane kryształy.

No i na koniec mała ciekawostka która zainspirowała ten wpis - nie wszystkie cząstki kamienia zapalniczkowego spalają się przy iskrzeniu - małe cząstki pozostają i mogą zapalić się w sprzyjających okolicznościach, na przykład w gorącym powietrzu nad palnikiem kuchenki gazowej, co wielokrotnie obserwowałem.

--------
* Auer wymyślił na przykład "koszulki żarowe" do lamp gazowych, czyli bawełniane nasadki na końcówkę dyszy spalającej gaz. Po wypaleniu bawełny pozostaje szkielet soli toru i ceru, którymi była nasączona, żarzący się w płomieniu jasnym, białym światłem. To on wpadł też na pomysł że w żarówkach Edisona lepszym żarnikiem niż węgiel będzie cienki drucik wysokotopliwego metalu. Poza tym odkrył kilka pierwiastków.
[1] http://www.polskieradio.pl/5/3/Artykul/591234,Wybuch-w-fabryce-w-Gorzowie-Wlkp-Pracownik-aresztowany

niedziela, 8 grudnia 2013

Chemik na miejscu zbrodni - wykrywanie odcisków palców

Ilekroć przewracając kartki książki mamy problem z rozdzieleniem stron i ilekroć chwytamy ciężkie przedmioty, starając się ich nie upuścić, zwracamy uwagę na to co poza samą siłą uścisku daje nam dobry chwyt - szorstkość skóry. Skóra zasadniczo jest z zewnątrz gładka i śliska, zwłaszcza gdy jest wilgotna, tymczasem wilgotne palce zazwyczaj zachowują dużą szorstkość, za sprawą drobnych listewek na powierzchni skóry, nazywanych liniami papilarnymi. Ewolucyjne mechanizmy postarały się aby nasze palce były wystarczająco chwytne właśnie dzięki tym nierównościom, zarazem jednak nie miało znaczenia w jaki sposób będą rozłożone na skórze, byle ich przebieg utrudniał ześlizgiwanie się zarówno wzdłuż jak i w poprzek opuszki palca. Dlatego kształt i przebieg linii nie jest specjalnie regulowany, zależąc zapewne od mnóstwa przypadkowych czynników związanych z rozrostem stopniowo rozciąganej skóry w okresie rozwoju embrionalnego. Ponieważ zaś możliwości fałdowania jest przeogromna liczba a ostateczny wzór może zależeć na przykład od ruchów embrionu, rozwój linii przypomina rozwój płatków śniegu - i podobnie jak one pomimo powtarzalnego ogólnego schematu, układ linii jest dla każdego człowieka inny, wyjątkowy. Wydaje się zaskakujące że dopiero tak późno, bo aż w XIX wieku ktoś wpadł na pomysł, że skoro te układy są tak różnorodne, to można by po nich zidentyfikować człowieka. Także takiego który popełniwszy przestępstwo, odbił swe unikalne układy na miejscu zbrodni.
Już w starożytności odciśnięcie palca bądź ręki na glinianej tabliczce mogło być uznane za sposób poświadczenia własności czy swoistego podpisania się przez nie znającego pisma, chińskie opowieści o mądrych sędziach rozwiązujących sprawy kryminalne czasem wspominały o identyfikacji za pomocą porównania dłoni z jej odciskiem, ale  wydaje się że była to raczej identyfikacja antropomorficzna (długość poszczególnych palców, szerokość dłoni itp) aniżeli daktyloskopowa. Próby opisu ich wyglądu i rodzajów podjęto w XVII wieku, jednak trzeba było trafu aby ktoś zajął się tym tematem poważnie i pod kątem kryminalistyki.

Historia
Szkocki chirurg dr Henry Faulds był ciekawą postacią. W ramach misji prezbiterianów w latach 70. XIX wieku udał się do Japonii gdzie wywarł duży wpływ na rozwój nowoczesnej chirurgii w tym kraju. Zakładał szpitale w których stosował antyseptyczny reżim Listera, zapobiegający zakażeniom. Założył pierwszy na wyspach zakład opiekujący się niewidomymi, propagował higienę i przyczynił się do zakończenia kilku epidemii. Napisał dwie książki podróżnicze a jego szpital w Tokio był uważany za najlepsza azjatycką placówkę zdrowotną.
W trakcie tych wszystkich zajęć miał jednak czas aby zajmować się różnymi drobnostkami. Na przykład pomagał w wykopaliskach przyjacielowi, Edwardowi Morse'owi, który przekopując starożytne kopce i ruiny segregował odnalezioną ceramikę, starając się określić osobne okresy kulturowe. Gdy przeglądali szczątki rozbitych waz, talerzy, dzbanów i drobnych przedmiotów, zwrócili też uwagę na odciśnięte ślady palców starożytnych rzemieślników, którzy kształtowali miękki materiał a po których po tysiącach lat jako jedyny ślad pozostał odcisk delikatnych linii. Faulds zaczął się wówczas przyglądać własnym palcom, i porównywał ich wygląd z palcami innych ludzi. Stwierdził, że w szczegółach różnią się one od siebie na tyle dobrze, że po samych śladach dałoby się, jak sądził, stwierdzić kto je zostawił. I być może uwaga ta skończyłaby się najwyżej drobnym artykułem czy też jakąś wzmianką w kolejnej książce o swej praktyce lekarskiej, gdyby nie sprawa która wręcz zmusiła go do działania.
Oto doktor stwierdził, że ktoś podkrada mu alkohol z szafki. Sprawca pozostawił na butelce wyraźne, tłuste odciski. Ponieważ do szafki miało dostęp tylko kilka osób, poprosił je aby pozostawiły mu odbitki opuszków swych palców umoczonych w atramencie. Po wskazaniu, że jego odciski wyglądają tam samo jak te z butelki, jeden z studentów przyznał się. Nieco później jednego z lekarzy oskarżono o kradzież z włamaniem do domu, gdzie sprawca, wspinając się po okopconym sznurze, pozostawił na ścianie odcisk całej dłoni. Wprawdzie nie było jeszcze wówczas pewne czy wzory się nie powtarzają, ale wszyscy się zgodzili, że skóra na dłoniach lekarza nie mogła zmienić się w ciągu jednego dnia, gdy więc Faulds pokazał że odcisk nie pasuje do dłoni oskarżonego, policja uznała siłę dowodu i uwolniła go.

Zachęcony tym sukcesem Faulds, napisał artykuł opisujący swe odkrycia,. zawierający wyraźne wskazanie, że dysponując obszerną bazą takich śladów można by ułatwić rozwiązywanie zagadek kryminalnych. Gdy zaś w roku 1880 opublikował go Nature, okazało się ze Faulds nie był pierwszy. Już w latach 60. XIX wieku brytyjski urzędnik sir William Hershel, urzędujący w kolonii w Indiach, uznał że najlepszym sposobem osłabienia fali fałszerstw, będzie nakazywanie wypełniającym dokumenty aby "podpisywali" je przystawiając obok tekstu odcisk całej dłoni. Ułatwiało to prace w przypadku niepiśmiennych, którzy nie mieli wyrobionego podpisu, zwiększało strach oszustów których identyfikacja byłaby szybsza i odwoływało się do przesądnego powiązania śladów z osobą.

Po pewnym czasie, przekonawszy się że na żadnym z tysięcy odcisków wzory się nie powtarzają, poprzestał na odbitkach palca środkowego i kciuka.
Po artykule w Nature, Hershel zgłosił się jako wcześniejszy odkrywca tej metody identyfikacji, zaś pomiędzy obydwoma panami rozpoczął się zacięty spór o pierwszeństwo, trwający aż do XX wieku. Faulds próbował zainteresować swymi wynikami Scotland Yard, ale rewelacje te przyjęto wówczas chłodno, przedkładając nad odciski będący nowością system antropometryczny Bertillona, opisujący przestępców a pomocą danych wielkości, długości i rozstawy charakterystycznych cech budowy fizycznej

Jeszcze przed publikacją Faulds opisał swe badania w liście do Karola Darwina, którego jednak niespecjalnie one zainteresowały. Przekazał jednak list swemu kuzynowi Francisowi Galtonowi, który zajął się tą sprawą sądząc, że będzie w stanie znaleźć jakieś specyficzne cechy rasowe i dziedziczne, mogące pozwalać ocenić cechy charakteru, umysłowości czy wyglądu. Nie udało mu się to, ale uczynił co innego - opierając się na kartach Hershela i własnych badaniach wykazał unikalność linii papilarnych, a tym samym przydatność w identyfikacji. On też opisał występowanie we wzorach charakterystycznych punktów - minucji - będących miejscami zakończeń, skrzyżowań lub rozwidleń linii. Pozwoliło to lepiej porównywać ze sobą odciski. Owocem badań była książka wydana w 1892, a także liczne artykuły.

Przydatność nowej metody ujawniła się bardzo szybko, bo już w tym samym roku. 19 czerwca 1892 roku w argentyńskiej miejscowości Necochea popełnione zostaje brutalne morderstwo - nieznany sprawca zabija nożem dwójkę małych dzieci 27-letniej Franceski Rojas. Oskarża ona o zabójstwo swego sąsiada, którego zaloty odrzucała od dłuższego czasu. Tamtejsza policja bierze go na przesłuchanie, bardzo długie i brutalne, ale nie dochodzi do rozstrzygnięcia - podejrzany nie przyznaje się zaś jego znajomi potwierdzają alibi. Równocześnie wyjawia, że matka zabitych dzieci znalazła ostatnio narzeczonego, który, jak podsłuchał z jej narzekań, nie chce się z nią ożenić "dopuki ma te przeklęte bachory". Poszlak mogących potwierdzić którąś z teorii brakowało.Śledczy znaleźli się w impasie. Inspektor prowadzący sprawę odkrywa jednak, że mimo upływu kilku dni na futrynie drzwi zachował się bardzo wyraźny krwawy ślad palca sprawcy, i przypomina sobie Juliana Vuceticha, który mówił mu niedawno o tego typu dowodach.
Vucetich, będący urzędnikiem policyjnym z centrali, był nieoczekiwanie Chorwatem, a przy tym człowiekiem bardzo postępowym. Już w poprzednim roku natknął się na artykuły Galtona, po których ściągnął publikację Fauldsa i zaciekawiony nakazał policjantom pobierać odbitki palców od zatrzymywanych więźniów, mając nadzieję zestawienia bazy pomocnej w razie ich recydywy. Jego inspektor badający sprawę w Necochea pamiętając o tym, odpiłował od futryny kawałek ze śladem, po czym kazał zostawić odbitki palców wszystkim zamieszanym w sprawę. Wprawdzie techniki analizy były wówczas bardzo prymitywne, ale nie trzeba było wielkiego rozeznania, aby zobaczyć, że ślad pasuje do linii papilarnych matki.
Po okazaniu dowodów, Francesca Rojas przyznała się. Została skazana na dożywocie. Był to pierwszy taki przypadek w historii kryminalistyki.
Już w 1885 roku pobieranie śladów palców więźniów stało się standardową procedurą w Indiach. W miarę upływu czasu kolejne kraje przyjmowały tą technikę - na terenach Polski pierwsze przypadki stosowania pochodzą z 1909 roku.

Jak powstają ślady linii papilarnych?
Skóra jest stale zwilżana potem wydzielanym przez odpowiednie gruczoły. Pot zawiera głównie wodę, sole mineralne i proste związki organiczne, w tym węglowodany, aminokwasy i kwasy tłuszczowe. W dodatku skóra jest natłuszczana łojem. Mieszanka obu substancji tworzy na powierzchni opuszek palców cienką warstewkę. Gdy dotykamy jakiejś powierzchni, substancja potowo-tłuszczowa zostaje na nią naniesiona, ale z oczywistych względów tylko ta pokrywająca wystające listewki linii papilarnych nie zaś ta wewnątrz głębokich rowków między nimi. Na powierzchni pozostaje więc ślad listewek skórnych.
Jeszcze kwestia terminologii - przyjęło się powszechnie mówić o odciskach palców, jednak specjaliści uznają ten termin za niedokładny. Odcisk powstaje w wyniku odciskania kształtu w miękkim materiale, toteż za odcisk palca możemy uznać ślad pozostawiony na przykład w glinie, plastelinie, wosku czy nawet grubej warstwie brudu - i takie są też znane kryminalistyce. Inaczej wygląda rzecz gdy chodzi o dotykanie powierzchni twardych, wówczas pozostaje jedynie odbicie wzoru linii, ale nie wgłąb materiału. Dlatego za poprawny uważa się termin odbitki palców czy odbitki linii papilarnych. Można też mówić o śladach daktyloskopijnych czy wreszcie śladach palców.
Powstawanie odbitki linii papilarnych jest podobne do odbijania druku ze wzoru czcionki czy drzeworytu, co znalazło odzwierciedlenie w angielskim określeniu "fingerprint" czyli dosłownie "palcodruk".

Linie na opuszku palców są na dłuższą metę nieusuwalne - wprawdzie niektórzy przestępcy próbowali takich metod jak wytrawianie naskórka kwasem czy ścieranie, ale wraz z odradzaniem skóry, linie powracały. Potrafią odtworzyć się nawet po odcięciu skóry, zwłaszcza że końcówki palców mają dużą skłonność do odrastania. Kiedyś przy wycinaniu chwastów na działce zdarzył mi się przykry wypadek w wyniku którego odciąłem sobie nożem pół opuszka palca serdecznego. Miejsce to zagoiło się tak że dziś nie da się zauważyć śladów po cięciu. Z drugiej strony na jednym z kciuków w odcisku daje się zauważyć cieniutką bliznę - ślad po głębokim skaleczeniu z wczesnego dzieciństwa.

W sytuacji gdy ślad jest odciśnięty w miękkim materiale lub odwzorowany substancją o wyraźnym kolorze, a więc krwią czy smarem, nie ma problemu w jego znalezieniu i skopiowaniu. Wiele jednak odbitek jest niewidocznych, zwłaszcza na matowej powierzchni. Standardowym sposobem ujawniania tych śladów utajonych, jest nanoszenie drobnego proszku mającego większą skłonność do przylepiania się do potowo-tłuszczowej substancji niż do podłoża, zazwyczaj przy pomocy pędzelka o delikatnym włosiu. Standardowo używanymi proszkami są różne odmiany sadze, proszki metaliczne czy tlenki metali. Ciekawym przypadkiem są proszki magnetyczne, nakładane na powierzchnię w formie "pęczka" przyklejonego do magnesu, co zapewnia bardziej delikatne naniesienie bez ryzyka zostawienia rys po włoskach
Tak ujawnione ślady przenosi się na lepką folię, do której przykleja się proszek, i którą można umieścić w kartotekach.

Jednak poza tymi prostymi technikami, stosowane mogą być specyficzne odczynniki ujawniające utajnione ślady, zwłaszcza te starsze, które po wyschnięciu straciły lepkość i słabo przyklejają do siebie proszek. Jakie są to odczynniki? Pisałem już kiedyś o chemicznych testach na wykrycie krwi, teraz więc skupię się na chemicznych odczynnikach pozwalających na ujawnienie i utrwalenie niewidocznych odbitek daktyloskopowych nawet po upływie wielu lat

Jod
Użycie par jodu do ujawnienia niewidocznych odcisków było pierwszą nie proszkową metodą, znaną już od 1863 roku ale w kryminalistyce użytą dopiero na początku XX wieku. Zasada działania opiera się na niezwykle prostym mechanizmie - stały jod, mający postać grafitowego proszku, powoli paruje, zwłaszcza po lekkim podgrzaniu. Jego opary chętniej rozpuszczają się i gromadzą w tłuszczowym śladzie odcisku palca niż na większości badanych powierzchni. W efekcie po pewnym czasie odcisk zabarwia się na żółto lub pomarańczowo:
Metoda nadaje się do materiałów porowatych, zwłaszcza tych które mogłyby zostać uszkodzone przez płynne odczynniki a więc dokumentów a w pewnym stopniu też tkanin, dziś jednak ma ograniczone zastosowanie i chyba nie jest często używana. Ślady ujawnione tą metodą z czasem zanikają z powodu odparowywania jodu, toteż utrwala się je fotograficznie. W przypadku gdy uzyskany kontrast będzie zbyt słaby (powiedzmy - pomarańczowy odcisk na pożółkłym papierze) można go zwiększyć napryskując na powierzchnię zawiesinę skrobi. W reakcji z jodem tworzy ciemnogranatowy kompleks, wyraźnie odcinający się od tła. W tej formie jod jest nieco trwalszy ale i tak po pewnym czasie zabarwienie zanika. Opary jodu są silnie trujące i drażniące, toteż chcącym się bawić w takie próby radzę zachować dużą ostrożność, i zamiast dużych komór użyć szczelnie zamkniętego słoika. Po zaniknięciu jodowych śladów można użyć innych technik pozwalających na długotrwałe utrwalenie, może być to zatem metoda wstępna.[1]


Ninhydryna

Ninhydryna formalnie rzecz biorąc może być uznana za wodzian, czyli pochodną ketonu, o dużej reaktywności za sprawą oddziaływań dwóch sąsiadujących takich grup. Chętnie w związku z tym reaguje z aminami a także aminokwasami, będącymi składnikiem śladu tłuszczowego odcisku palca, tworząc w szeregu reakcji produkty o purpurowej barwie:

Tylko z niektórymi aminokwasami daje inne zabarwienie, a z aminami drugorzędowymi pomarańczowe sole. Znana w chemii do oznaczania aminokwasów i białek, w kryminalistyce znalazła zastosowanie w latach 50. do ujawniania odcisków na materiałach porowatych i chłonnych, jak papier czy drewno, na których wchodzący w drobne szczelinki proszek zupełnie zaciemniałby obraz.
Ninhydryna rozpuszczona w bezwodnym alkoholu musi być napryskana na badaną powierzchnię przy pomocy spryskiwacza dającego drobne kropelki lub przy pomocy spreju bo i takie zestawy stworzono. Ma bardzo drażniący zapach i prowokuje kaszel dlatego lepiej robić to przy dobrej wentylacji. Powierzchnia powinna być równo pokryta ale nie zmoczona. Aby zaszła reakcja pokrytą powierzchnię należy ogrzać - gdy tą metodą ujawniałem chromatogram bibułowy aminokwasów, wystarczało potraktowane suszarką nastawioną na grzanie, choć dla papieru dobrym sposobem mogłoby być użycie żelazka.


Z oczywistych względów metoda nie nadaje się do powierzchni ze skóry naturalnej, która zabarwiłaby się nam cała. W przypadku papieru nakredowanego, o lekko zasadowym odczynie, reakcja może bądź nie zajść bądź dać słabe zabarwienie. Zwykle przeciwdziała się temu przez dodatek kwasu octowego do roztworu.
Częstą metodą obróbki ujawnionych odbitek jest potraktowanie ich eterowo-alkoholowym roztworem soli cynku. Tworzy on z purpurowym związkiem kompleks o kolorze słabo pomarańczowym, ale za to świecący w ultrafiolecie, co może mieć znaczenie w przypadku gdy powierzchnia badana jest kolorowa. W późniejszych latach wymyślono szereg pochodnych ninhydryny oraz związków o podobnej reaktywności, mających zastosowanie w szczególnych przypadkach. Jednym z nich jest Diazafluorenon (DFO).
Związek ten został zastosowany w kryminalistyce stosunkowo niedawno. Pod względem budowy oraz działania jest podobny do ninhydryny dając przy tym dość słabe, pomarańczowe zabarwienie, ma jednak pewną cenną właściwość - w świetle niebieskim fluoryzuje na żółto, co pozwala zauważyć ujawnione ślady nawet gdy są one bardzo słabe, działa więc podobnie do cynkowego kompleksu ninhydryny ale jest prostszy w użyciu.
Dobre cechy ninhydryny i DFO łączy w sobie inna pochodna, 5-metylotioninhydryna(5-MTN). Ze śladami aminokwasów daje purpurowe zabarwnienia, lecz po potraktowaniu solami cynku staje się ono tylko ciemniejsze. Pod wpływem zielonego światła cynkowy kompleks fluoryzuje na żółto co obserwuje się przez filtr czerwony. Istnieje jeszcze specjalna wersja ninhydryny do zastosowania na papierze termicznym (paragony sklepowe).[2] [3]


Super klej
Często dziś używaną metodą ujawniania niewidocznych odcisków na twardych, gładkich powierzchniach jest metoda cyjanoakrylowa. Odkryto ją w dużej mierze przypadkowo - japoński technik kryminalistyki Fuseo Matsumur zajmował się śladami mikrowłókien i włosów, które zbierał i zabezpieczał na szklanych płytkach pokrytych warstewką szybko schnącego kleju. Płytki przechowywał potem w pojemniku z przegródkami, tak aby płytki nie stykały się ze sobą i aby nie zanieczyszczały ich włókna spoza miejsca zbrodni. Przeglądając płytki zauważył w 1977 roku, że na odwrotnej stronie po pewnym czasie przechowywania ujawniają się odciski jego palców, dając niezmywalne białe ślady. Zainteresował tym kolegów i wkrótce Japończycy opracowali metodę w takiej formie jaką znamy dziś.
Wszystkie szybko schnące superkleje cyjanoakrylowe, zawierają głównie takie związki jak 2-cyjanoakrylan metylu, etylu lub butylu. Są to zatem estry pochodnej kwasu akrylowego podstawionej grupą nitrylową przy drugim węglu. Taka struktura jest bardzo nietrwała, grupa nitrylowa z jednej strony a estrowa z drugiej, odciągają elektrony z fragmentu łańcucha z wiązaniem podwójnym. W efekcie ten fragment staje się podatny na atak grup nukleofilowych, a więc aktywnych cząstek z parą elektronową. Przykładem takiego nukleofila może być grupa hydroksylowa powstająca z dysocjacji wody. Jej przyłączenie do końcówki wiązania podwójnego powoduje jego pęknięcie i wytworzenie karboanionu. Ten jest dobrym nukleofilem i reaguje z kolejną cząsteczką akrylanu. Zapoczątkowana śladami jonów hydroksylowych reakcja biegnie dalej sama, tworząc polimer dobrze wiążący ze sobą powierzchnie klejone.

A co to ma wspólnego z ujawnianiem odcisków palców?
Monomery cyjanoakrylowe są lotne, co zresztą jest jedną z ich wad, bowiem w większych stężeniach stają się trujące. Monomer akrylowy nie powinien reagować z większościami powierzchni, może natomiast wchodzić w reakcję z aminokwasami, lipidami i cukrami substancji śladów palców, zwłaszcza w obecności wilgoci.

Badany przedmiot umieszcza się w szczelnej komorze, w której umieszcza się naczynie z klejem, bądź posmarowaną nim płytkę czy folię. Komora jest podgrzewana a powietrze wewnątrz nawilżane. Po upływie odpowiedniego czasu kombinacja par kleju i wilgoci powoduje ujawnienie śladów. Możliwe jest też użycie namiotów gdy badany przedmiot jest większy, bądź miejscowo specjalnego "pistoletu" odparowującego klej i wydmuchującego opary na badaną powierzchnię.

Ujawnione tą metodą ślady są białe lub kremowe,  aby zwiększyć kontrast i lepiej je uwidocznić, na przykład proszkami; często stosuje się fluorescencyjne barwniki chętnie łączące się z substancją polimerowo-tłuszczową, na przykład Basic Yellow 40 świecący w ultrafiolecie na żółto-zielono, Safranina O świecąca w zielonym świetle na czerwono albo Rodamina 6G świecąca na żółto. Używa się kilkunastu takich preparatów, zależnie od rodzaju powierzchni i dostępności[4][5]

Azotan srebra
Ta metoda nie jest zbyt często używana, choć znano ją już w XIX wieku. Właściwie używa się jej do poszukiwania śladów tak starych że pozostałe metody nie są w stanie ich ujawnić, ale dopiero na końcu, jest bowiem niszcząca. Jako pierwsza ze śladu ulatnia się woda, po niej krótkołańcuchowe kwasy tłuszczone (skóra dziecka wytwarza tylko takie kwasy przez co odciski palców dziecka dość szybko zanikają) na koniec rozkładowi ulegają aminokwasy. Co więc może pozostać na powierzchni, gdy wszystko inne już zniknie? Sole mineralne a przede wszystkim chlorek sodu obecny w pocie.
Badane powierzchnie należy spryskać azotanem srebra ale tak aby nie były zupełnie zmoczone. Jony srebra w reakcji z jonami chlorkowymi dadzą biały, nierozpuszczalny osad chlorku srebra, który po wystawieniu na słońce ciemnieje pozostawiając ciemne plamy. Takie same plamy powstaną na ubraniu oraz naszej skórze, dlatego przy użyciu tego związku można się na prawdę mocno i dosyć trwale pobrudzić. Metoda nadaje się do papieru i skóry, nie sprawdza się przy drewnie i tkaninach. Jeśli badana powierzchnia była wystawiona na działanie wody, ślady zostaną zmyte. Z oczywistych względów przeszkadzają tu sole mineralne których obecność zaciemnia tło. [6]

Gencjana
Fiolet krystaliczny lub metylowy, to mieszanina związków o budowie podobnej do fenoloftaleiny. Dawniej używana do farbowania wełny czy jako barwnik ołówka kopiowego, dziś też niekiedy do odkażania ran. Jest barwnikiem lipofilowym, w związku z tym ma skłonność do wchłaniania przez tłuszcze. Na tym też opiera się jej działanie.

W kryminalistyce znalazła zastosowanie do uwidaczniania odcisków na materiałach lepkich, jak na przykład taśmy klejące, etykietki itp. Badany przedmiot zanurza się w jej ok. 2% roztworze na dwie minuty, po czym spłukuje czystą wodą. Odbitki linii papilarnych zabarwiają się wówczas na fioletowo[7]

Czerń Sudan 
Ciemny barwnik o właściwościach lipofilowych, działający tak samo jak gencjana - chętniej absorbuje się w tłuszczowym śladzie niż w podłożu. Ma zastosowanie na materiałach klejących, zatłuszczonych lub woskowatych, na przykład nawoskowany papier czy folie spożywcze. Może być też użyta do zabarwienia śladów ujawnionych metodą cyjanoakrylową na przykład w przypadkach gdy dotyczą one powierzchni jasnych, nie chłonnych i fluoryzujących.[8]

Lumicyano?
Najnowsza technika kryminalistyczna, jest połączeniem kilku wartościowych cech. Tak jak pochodne ninhydryny miały łączyć zdolność ujawniania kontrastowych śladów z fluorescencją, tak lumicyano łączy technikę cyjanoakrylową z luminescencyjną bez potrzeby stosowania dodatkowych odczynników. Pomysł jest prosty - do cząsteczki cyjanoakrylanu podczepiono odpowiednią grupę, w tym przypadku jest to tetrazyna - pięciokątny pierścień z czterema atomami azotu.
Tak samo jak superklej, po ogrzaniu paruje i polimeryzuje w śladzie tłuszczowym. Ujawniony kremowy odcisk fluoryzuje w ultrafiolecie.[9]
Technika została już przetestowana w laboratoriach kryminalistycznych. Wyniki badań pojawiły się w tym roku.
-------
* http://en.wikipedia.org/wiki/Fingerprint
* http://onin.com/fp/fphistory.html
* http://www.bvda.com/EN/sect1/en_1_6a.html
* http://en.wikipedia.org/wiki/Henry_Faulds
* http://en.wikipedia.org/wiki/Sir_William_Herschel,_2nd_Baronet
* http://en.wikipedia.org/wiki/Francis_Galton
* http://en.wikipedia.org/wiki/Juan_Vucetich
* http://en.wikipedia.org/wiki/Francisca_Rojas

[1] http://makezine.com/forensics-laboratory-82-revealing-l/
[2] www.viewsfromscience.com/documents/webpages/led_fluorescence_p7.html
[3]  http://makezine.com/forensics-laboratory-83-revealing-l/
[4]  http://www.bvda.com/EN/sect1/en_1_9a.html
[5] http://makezine.com/projects/fingerprinting-with-super-glue/
[6] http://makezine.com/laboratory-84-revealing-latent-fing/
[7] http://makezine.com/laboratory-86-revealing-latent-fing/
[8] http://www.bvda.com/EN/sect1/en_1_12a.html
ResearchBlogging.org [9]  Cosimo Prete, Laurent Galmiche, Fifonsi-Gwladys Quenum-Possy-Berry, Clémence Allain, Nicolas Thiburce, Thomas Colard (2013). Lumicyano™: A new fluorescent cyanoacrylate for a one-step luminescent latent fingermark developmen Forensic Science International , 1-3 DOI: 10.1016/j.forsciint.2013.07.008

niedziela, 22 września 2013

Cebulowe łzy

O tym dlaczego czosnek śmierdzi a cebula skłania nas do płaczu.

Cebula jadalna to gatunek wieloletniej rośliny, należący formalnie do rodzaju czosnek w ramach szerszej rodziny amarylkowatych, wobec czego jej krewniakiem jest też narcyz. Stanowi składnik ludzkiej diety od kilku tysięcy lat - cebulowe łuski i ślady zwęglonych w ognisku cebulek znane są aż z 5 tysiąclecia przed naszą erą. Były też powszechnie spożywane w starożytnym Egipcie, o czym często wspominają zachowane inskrypcje, stanowiąc obok chleba i piwo podstawę diety klas niższych. Była czczona prawdopodobnie jako jeden z symboli odrodzenia, na co wskazują jej znaleziska w grobowcach i obecność na malowidłach grobowych. Ślady cebulowych łusek znaleziono w oczodołach mumii Ramzesa IV.
W kontekście Egiptu wspomina o niej także Biblia: w Księdze Liczb w rozdziale 11 Izraelici wędrujący przez pustynię zaczynają narzekać na brak dobrego jedzenia, wspominając że w Egipcie mieli pod dostatkiem ryb, ogórków, melonów, cebuli, czosnku i porów, co wskazywałoby na całkiem przyzwoitą dietę jak na przymusowych robotników.
Uprawa cebuli na rysunkach z "ptasiego grobowca" z nekropolii w Sakkarze
Warzywa te znane były też w starożytnej Grecji i Rzymie. W języku łacińskim zwano ją cepa lub zdrobniale cepula, co wpłynęło zarówno na nazwę polską jak i niemiecką (Zwiebel od staroniemieckiego Zwibolle). Cebula uważana była za środek wzmacniający, stąd też zjadali ją gladiatorzy dbający o formę, czosnek miał chronić przed chorobami i złymi duchami, przy czym zwykle był dla tych zastosowań nie jedzony tylko noszony jak amulet; z kolei por był uważany za afrodyzjak. Cesarz Neron zajadał się porem w ogromnych ilościach, uważając go za środek poprawiający jakość głosu, stąd też popularny przydomek "porrophagos" - porożerca.
Czosnek zdobył sobie dużą popularność wśród ludów semickich, najbardziej znani byli z tego Żydzi, regularnie jedzący czosnek w szabat. W późniejszych czasach doprowadziło to do wykształcenia stereotypu Żyda-śmierdziela* Co ciekawe dokładnie przeciwny stosunek mieli do niego Arabowie - w kilku miejscach Koranu wspomniane jest, że osoby jedzące czosnek nie powinny zbliżać się do meczetu lub grup modlących się, i czekać w domu aż przestaną pachnieć. Ostatecznie jednak w Islamie nie jest to warzywo zakazane.

Wszystkie rośliny z tego rodzaju charakteryzuje silny, ostry zapach i smak, spowodowany obecnością wtkankach aktywnego związku siarkoorganicznego Alliiny ulegającego dalszym przemianom podczas krojenia. A przemiany te są nieco bardziej skomplikowane, niż to się nam dotychczas wydawało.
Alliina formalnie rzecz biorąc jest pochodną aminokwasu Cysteiny, w której końcowa siarka została utleniona do sulfotlenku i zalkilowana grupą allilową:

W sulfotlenkach siarka jest na czwartym stopniu utlenienia i formalnie tworzy z tlenem wiązanie podwójne będąc analogiem ketonów, jest ono jednak tak silnie spolaryzowane, że często używa się zapisu jonowego z ładunkiem dodatnim na siarce i ujemnym na tlenie. Przy takiej strukturze jedna z par elektronowych zostaje wolna a jej odpychanie nadaje pozostałym wiązaniom formę piramidy trygonalnej. W efekcie pojawia się asymetria umożliwiająca powstanie dwóch form chiralnych, tak jak to jest w przypadku tetraedrycznym węglem. Alliina ma w związku z tym dwa centra stereogeniczne - na siarce (S) i na węglu (R) w części pochodzącej od aminokwasu.
W chwili wyodrębnienia był to pierwszy znany naturalny związek z takim układem centrów. W Cebuli ponadto występuje izoalliina, z podwójnym wiązaniem przesuniętym o jedno miejsce. Oba związki są bezwonne. Gdy zaczynami kroić, żuć czy rozgniatać cebulki, sytuacja ulega zmianie - ze zniszczonych komórek uwolnione zostają enzymy, głównie allinaza.

Od tego momentu zaczyna się kaskada reakcji: alliinaza hydrolizuje alliinę, dzieląc wiązanie między siarką a węglem części aminokwasowej. Z części siarkowej powstaje kwas 2-propenosulfonowy, a z aminokwasowej dehydroalaniny. Ta ostatnia spontanicznie rozkłada się do amoniaku i kwasu pirogronowego.

Kwas sulfonowy jest cząsteczką nietrwałą, stąd też bardo chętnie reaguje sam ze sobą. Dwie cząsteczki kondensują, tworząc allicynę, będącą głównym składnikiem zapachowym czosnku.

Cebula zawiera zarówno alliinę jak i izoalliinę, z których po reakcji z alliinazą powstaje kwas 2-propenosulfonowy i 1-propenosulfonowy, z ich kondensacji powstaje allicyna, choć raczej w ilościach śladowych, i związki polisiarkowe. A skąd łzy?
Jak dawniej sądzono, przyczyną są kwasy sulfonowe uwalniane do powietrza przed kondensacją, które rozpuszczając się w łzach zakwaszały je wywołując łzawienie. Jednak w 2002 roku odkryto inny mechanizm[1]. Powstający specyficznie w cebuli kwas 1-propenosulfonowy zostaje przekształcony przez kolejny enzym, nazwany syntazą czynnika łzawiącego, czyli w skrócie LFS. Powoduje on przesunięcie jednego wodoru i wiązania podwójnego, tworząc związek z wiązaniem podwójnym między siarką a węglem - propanotial-S-tlenek. Formalnie nadal jest on S-tlenkiem ale bez właściwości kwasowych. Możliwe są dwa położenia tlenu, stąd dwa izomery syn i anti, z przewagą tej pierwszej.
Związek ten jest bardzo łatwo lotny i szybko przedostaje się do powietrza, rozpuszcza w łzach i tutaj podrażnia oko, ale nie poprzez zakwaszanie lecz działanie na receptory bólu. Jest zatem silnym lakrymatorem, którego wydzielanie przez roślinę jest strategią mającą odstraszyć roślinożercę. Właśnie za to odkrycie, ostatecznie tłumaczące sprawę, przyznano tegorocznego Ig-Nobla choć samo w sobie nie jest specjalnie zabawne.

Tak rozpoczęty łańcuch reakcji nie kończy się.  Łzawiący S-tlenek jest cząsteczką aktywną, chętnie więc, zwłaszcza podczas smażenia i gotowania, łączy się sam ze sobą tworząc dipropylodisulfid z mostkiem siarczkowym. Formalnie rzecz biorąc jest to uwodorniona allicyna. Wyjściowy związek ulega też hydrolizie do aldehydu propionowego o ostrym ale raczej owocowym zapachu, ale też kondensacji do związków wielosiarczkowych, nawet cyklicznych, o zapachach ostrych i nieprzyjemnych.
W przypadku czosnku końcowa allicyna jest głównym związkiem o specyficznym zapachu, ale nie jedynym. W wyniku jej rozkładu czy to w organizmie czy podczas gotowania, poprzez redukcję S-tlenek zamienia się w beztlenowy dwusiarczek dwuallilu (DADS), o zapachu jeszcze bardziej nieprzyjemnym. Jest to związek łatwo lotny. Powstając w organizmie podczas trawienia przedostaje się do krwioobiegu, stamtąd w płucach a wreszcie w naszym oddechu wpływając na zapach z ust. Inną pochodną jest dwusiarczek alliowo propylowy, decydujący z kolei o ostrym smaku cebuli. Oba związki są łatwo lotne i odparowują podczas gotowania, stąd słodkawy smak przyrządzonego warzywa. Są też alergenami, stąd możliwość uczulenia na czosnek.
 Możliwe są też pochodne z większą ilością atomów siarki. Gdy czosnek jest macerowany w tłuszczu, czynnik łzawiący łączy się z allicyną tworząc ajoen. Tak więc z jednej czy dwóch cząsteczek może powstać kilkadziesiąt podobnych związków, w tym kilka o działaniu łzawiącym. Ponieważ czosnek nie zawiera enzymu LFS przy jego krojeniu już tak nie płaczemy.

A co zrobić, aby nie płakać przy cebuli? Zbyt dobrych rad nie ma, enzymy przestają działać przy podgrzaniu do 60 stopni, więc być może blanszowanie w wodzie o temperaturze 70-80 stopni i ochłodzenie, powinno spowodować że krojona cebula nie będzie tak działać, zachowując smak. Allinaza praktycznie nie działa w niskich temperaturach, więc można też kroić cebulki ochłodzone wcześniej na górnej półce lodówki do kilku stopni albo krótko w zamrażalniku prawie do zera - taka cebula zacznie działać dopiero po ogrzaniu w sałatce. Oba enzymy przestają też być aktywne przy zakwaszeniu, więc można spróbować zakwaszać cytryną, ale nie do każdych zastosowań się to przyda.
Swój sposób przeprowadzili biotechnolodzy, za pomocą różnych technik hybrydyzacji wyciszając gen produkujący LFS i tworząc "niepłaczliwą" odmianę.[2]

Wszystkie opisane związki mają różnorodne działanie na organizm. Często są bakteriobójcze, mogą obniżać poziom cholesterolu albo zmniejszać krzepliwość; są przeciwutleniaczami, związkami przeciwzapalnymi czy pobudzającymi odpowiedź immunologiczną. Oczywiście roślina nie po to je wytwarza. Ich ostry zapach i drażniące działanie ma odstraszać, zniechęcać roślinożercę do zjadania cebulek. Tego jednak, że znajdzie się zwierzę, które będzie je zjadało właśnie dla tego smaku i zapach, matka natura nie przewidziała.
--------
* Stereotyp ten wykazuje duże podobieństwo do różnych rasistowskich mitów. Jednym z elementów dehumanizacji nienawidzonej grupy, jest zawsze twierdzenie, że jej członkowie są brudni i śmierdzą. Jeszcze na początku XX wieku powszechne było w Ameryce przekonanie, że murzyna można poznać po smrodzie. Identycznie postrzegano w Chinach pierwszych europejczyków. "Zapach Żyda" był też w dawnej Europie uważany za cechę wrodzoną, wywołaną grzechem przodków, którzy nie uznali Jezusa. W jednej z wersji mitu o morderstwach rytualnych, spożywanie macy z krwią miało likwidować ten wrodzony odór. A wszystko przez czosnek...

[1]  Imai S, Akita K, Tomotake M, Sawada H (2006. a) Identification of two novel pigment precursors and a reddish-purple pigment involved in the blue-green discoloration of onion and garlic. J Agric Food Chem 54 843–847.
[2]  Colin C. Eady, Takahiro Kamoi, [...], and Shinsuke Imai, Silencing Onion Lachrymatory Factor Synthase Causes a Significant Change in the Sulfur Secondary Metabolite Profile, Plant. Physiol. August 2008 147(4) 2096-2106

*http://en.wikipedia.org/wiki/Garlic
*http://en.wikipedia.org/wiki/Onion
*http://pl.wikipedia.org/wiki/Alliina
*http://de.wikipedia.org/wiki/Alliin
*http://en.wikipedia.org/wiki/Alliin
*http://en.wikipedia.org/wiki/Allicin
*http://en.wikipedia.org/wiki/Alliinase
* http://en.wikipedia.org/wiki/Syn-propanethial-S-oxide
*http://en.wikipedia.org/wiki/Diallyl_disulfide
*http://antaryamin.wordpress.com/2012/07/08/what-islam-says-about-eating-onion-and-garlic/
*http://www.touregypt.net/featurestories/neferherenptaht.htm
*http://onions-usa.org/all-about-onions/history-of-onions

środa, 4 września 2013

Skąd ten zapach?

Każdego kto co nieco liznął na temat mechanizmów odczuwania zapachu, musiało zastanowić jak to się dzieje, że wyraźny i charakterystyczny zapach mają substancje zdecydowanie nielotne, jak żelazo, miedź czy kawałek wapienia.

Zapach żelaza
W znanej powieści "Pachnidło" jedną z pierwszych prób uzyskania nietypowych zapachów otoczenia, jest uzyskanie ekstraktu o zapachu miedzianej gałki u drzwi. Gałka była moczona w chłodnym tłuszczu, z którego po zagęszczaniu uzyskał bohater substancję pachnącą właśnie tak jak metal. Nie jest to ze strony autora taka zupełna fantazja, bo metalowe przedmioty z jakimi się często spotykamy, rzeczywiście mają swój specyficzny, metaliczny zapach, porównywany niekiedy do zapachu zaschniętej krwi. Co takiego jednak pachnie, skoro metal i jego tlenki są nielotne?
Jak można zauważyć, woni takiej nabiera metal używany, często dotykany, nie będzie go miał natomiast dobrze oczyszczony. Zapach ten jest w istocie bardziej związany z nasza skórą. Skóra jest w naturalny sposób natłuszczona za sprawą pracy odpowiednich gruczołów łojowych. Łój jest mieszaniną zawierającą między innymi krótkołańcuchowe nienasycone kwasy tłuszczowe. Kwasy te mają to do siebie, że pod wpływem powietrza i światła łatwo utleniają się do nadtlenków, te z kolei pod wpływem jonów metali na niższych stopniach utlenienia, chętnie redukują się, tworząc rozmaite ketony i alkohole. Wśród nich 1-okten-3-on, związek o silnym, łatwo wyczuwalnym zapachu, choć pewne znaczenie mają też inne ketony. Na powierzchni metalu zawsze obecna jest pewna ilość wolnych jonów, zwłaszcza gdy jest pokryty warstewką zabrudzeń; jony reagują z nadtlenkami i metal zaczyna pachnieć. Aby uzyskać podobny efekt, wystarczy nasmarować dłonie niewielką ilością roztworu żelaza II. Dostarczycielem jonów może być też zaschnięta krew, w czym też naukowcy widzą wytłumaczenie dużego wyczulenia naszych nosów na takie związki.

W przypadku stali i żeliwa, pewne znaczenie mają też zanieczyszczenia metalu. Stal zawiera węgiel oraz domieszki fosforu. W obecności wilgoci cząstki węgla stają się półogniwami z pewnym ładunkiem elektrycznym, na których fosfor może utleniać się do fosforowodoru i organicznych fosfin o nieprzyjemnym zapachu, stąd dodatkowa nuta.[1] Zapach ma też duże znaczenie dla wyczuwania metalicznego smaku - w badaniach z ochotnikami, metaliczny smak wyczuwalny dla soli żelaza znikał po zatkaniu nosa, dla miedzi wyniki były niejednoznaczne.[2] Pewne znaczenie dla smaku metalu ma też powstawanie słabych prądów gdy jeden metal, na przykład kawałek folii aluminiowej, zetknie się z amalgamatową plombą.

Swój własny, nieprzyjemny zapach ma natomiast osm, a to z powodu powstawania na powierzchni lotnego czterotlenku.

Zapach kredy...
Zapach mokrej kredy, bądź świeżego wapienia, jest bardzo charakterystyczny. I smaczny. Trudno dokładnie określić dlaczego, ale często miałoby się ochotę zjeść taki kamień. Jedni opisują go jako "mineralny" inni jako "roślinny" ale spotkałem się też ze stwierdzeniami, że naturalny wapień pachnie jabłkiem i pieczonym chlebem. Moje skojarzenia są raczej synestetyczne, bo kojarzy mi się z wyglądem zmąconej wody,  chociaż niedawno jednak stwierdziłem że kreda z kopalni w Mielniku ma miękki zapach mąki.
Niekiedy mówi się, że ochota na zjedzenie kredy, to skutek niedoboru wapnia. Gdyby ta zasada odnosiła się też do innych substancji, musiałbym stwierdzić w swym organizmie przewlekły niedobór czekolady...
Ale właściwie czym pachnie kreda? Kwesta ta nie została chyba zbyt dokładnie zbadana, skoro żadnego "oficjalnego" wyjaśnienia nie znalazłem. Najczęstsze przypuszczenie odnosi się do tego, że zapach ma kreda bądź pyląca się bądź wilgotna. Prawdopodobnie podczas wysychania tworzą się drobne cząstki, które dostając się do nosa wywołują odczuwane wrażenie.
Dlaczego jednak te drobne cząstki miałyby wywoływać takie nietypowe wrażenia? Sama alkalizacja czy obecność węglanów nie wystarczy, skoro soda oczyszczona nie ma takiej woni, zapewne więc znaczenie ma tutaj wapń. Pierwiastek ten jest ważny dla utrzymania równowagi elektrycznej komórek nerwowych, w tym komórek węchowych. W normalnym przypadku poburzenie receptorów na powierzchni komórki węchowej, powoduje napływ do jej wnętrza jonów wapnia i odpływ jonów chlorkowych; powstająca zmiana potencjału tworzy sygnał przekazywany przez nerw. Mogę zatem domniemywać że dostarczenie wapnia bez jonów chlorkowych na powierzchnię z komórkami węchowymi w jakiś sposób zmienia bądź inicjuje ten proces, przez co mózg odczuwa jakby mieszankę wszystkich zapachów. Myślę że byłby to ciekawy temat badań dla jakiegoś biochemika.

... i innych minerałów
Własny, specyficzny zapach posiadać mogą też inne minerały. Siarka rodzima ma charakterystyczny zapach, szczególnie silny przy pocieraniu, biorący się po trosze z oparów siarki jak i z jej tlenków. Podobnie pachnieć mogą minerały siarczkowe jak piryt, co też jest związane z powolnym utlenianiem, w jakimś stopniu może też z powodu wydzielania siarkowodoru. Minerały arsenu, jak arsenopiryt, mają dla odmiany czosnkowy zapach powstający przy rozdrabnianiu i kruszeniu - chętnie wówczas iskrzą - wywołany arsenowodorem i siarczkiem arsenu. Łupki bitumiczne i pewne odmiany wapieni zawierających domieszki substancji organicznych, przy rozłupywaniu dają niemiły zapach siarkowodoru, skąd też doczekały się nazwy śmierdząca kreda (Stinkstone).
Wśród minerałów szczególnym przypadkiem jest Anozonit - minerał fluoru. Zapach jaki wydziela jest ostry i niezupełnie przyjemny; bywa porównywany do zapachu ozonu albo przepalonej elektroniki. Wiadomo że jest to fluoryt, który utworzył się w pobliżu promieniotwórczych skał, których oddziaływanie zaburzyło jego sieć krystaliczną. Przez długi czas sądzono, że zapach jest wynikiem wybijania przez promieniowanie fluoru, który natychmiast reagował z powietrzem w porach minerału, tworząc ostro pachnący fluorek tlenu i ślady ozonu - niedawno jednak odkryto, że przyczyna jest jeszcze bardziej interesująca.
Fluor jest pierwiastkiem tak ogromnie reaktywnym, że Moissan chcąc go po raz pierwszy wyodrębnić, musiał użyć aparatury wykonanej z platyny, bo ze szkłem reagował bardzo szybko. W mieszaninie z powietrzem bardzo chętnie przechodzi w fluorki tlenu i azotu, reaguje z wodą. Dla wszystkich jest więc oczywiste, że nie występuje w naturze w stanie rodzimym. Albo może inaczej - dotychczas dla wszystkich był to fakt najzupełniej oczywisty. Jednak badania jakim poddał anozonit Florian Kraus, powinny zmienić tą opinię.

Postanowił on sprawdzić dawne teorie przyczyn zapachu tego minerału, ale w sposób nie niszczący - rozkruszenie wystawia wnętrze na działanie wilgoci. Dlatego też zbadał kilka kryształków za pomocą spektrometrii magnetycznego rezonansu jądrowego NMR. Ponieważ jądra atomów fluoru posiadają spin i moment magnetyczny, ich sygnały mogą być obserwowane w ten sposób. Wyniki badania pokazały jednoznacznie, że obserwowany sygnał pochodzi od wolnego, cząsteczkowego fluoru, zamkniętego w mikroporach minerału[3]
To zatem co czuć od kryształków, to mieszanka zapachów fluoru, fluorku tlenu i ozonu. Ciekawe swoją drogą co by przyniosło zbadanie pewnej odmiany halitu, która a sprawą bliskości promieniotwórczych minerałów przybrała fioletowawy kolor - efekt taki może dawać stały koloid sodu.

Zapach karbidu
Każdy kto zetknął się z karbidem pewnie zauważył też niemiły zapach tej substancji. Nie każdy jednak zastanowił się, że bezwonny jest zarówno powstający w reakcji acetylen jak i wodorotlenek wapnia.
 CaC2 + 2H2OCa(OH)2 + C2H2
W tym przypadku sprawa jest łatwa do wyjaśnienia - karbid wytwarza się prażąc wapień z węglem. Wapień naturalny zawiera domieszki innych niż węglan soli wapnia, a więc siarczanu i fosforanu, które po zredukowaniu zamieniają się w siarczek i fosforek wapnia. Te podczas reakcji z wodą wydzielają siarkowodór i związki fosforowodorowe (głównie difosfina, sam fosforowodór jest bezwonny), pierwszy o zapachu zgniłych jaj a drugie o zapachu zepsutego czosnku.
-------
ResearchBlogging.org
* http://www.mindat.org/forum.php?read,6,284681,284731
[1] Glindemann D, Dietrich A, Staerk HJ, & Kuschk P (2006). The two odors of iron when touched or pickled: (skin) carbonyl compounds and organophosphines. Angewandte Chemie (International ed. in English), 45 (42), 7006-9 PMID: 17009284  
[2] Harry T. Lawless, Serena Schlake, John Smythe, Juyun Lim, Heidi Yang, Kathryn Chapman and Bryson Bolton (2004). Metallic Taste and Retronasal Smell Chem. Senses, 29 (1) DOI: 10.1093/chemse/bjh003  
[3] http://www.nature.com/news/stinky-rocks-hide-earth-s-only-haven-for-natural-fluorine-1.10992

wtorek, 20 sierpnia 2013

Waniliowo

Bierzemy dajmy na to jajka i mąkę, i cukier i proszek do pieczenia. I robimy ciasto. A żeby ciasto pachniało dodajemy cukru waniliowego. Albo wanilinowego. Jakoś tak...

Na to co tak na prawdę jest napisane na opakowaniach takiego cukru sam zwróciłem uwagę dopiero niedawno gdy na zajęciach oznaczaliśmy zawartość waniliny. Mówi się "cukier waniliowy" ale tak na prawdę napisane jest tam "cukier wanilinowy" - oznacza to, zgodnie z prawdą, że jest to cukier z substancją zapachową waniliną a nie z wanilią. W czym zaś jedno różni się od drugiego i jakie chemiczne są tego konotację, piszę poniżej.

Wanilia jest tropikalnym pnączem należącym do rodziny storczyków (orchidea) rosnącym w Ameryce środkowej i południowej, wspinającym się niczym liana na drzewa, z czasem drewniejąc i upodabniając się do małego drzewka. Kwitnie charakterystycznymi żółtymi kwiatami, zapylanymi przez pewne pszczoły bezżądłowe, wyrastającymi w grupach po 10-15 kwiatków. Po zapyleniu formują się podobne do strąków grochu płaskie torebki zawierające drobne, podobne do pyłku nasionka, błędnie nazywane strączkami.
Ale wbrew temu co można by sądzić, dojrzałe owoce wanilii są dla celów kulinarnych bezużyteczne. To co znamy jako laski wanilii, to torebki które zerwano przed dojrzeniem i poddano pewnym specyficznym procesom.
Zielony, zebrany przed otwarciem owoc jest bezwonny. Stanowiąca główny składnik zapachowy wanilina, jest w nim związana w formie nielotnego betaglukozydu. Tuż po zbiorze owoce poddaje się blanszowaniu przez szybkie zanurzanie w gorącej wodzie, lub zamrażaniu, co zapobiega dojrzewaniu oraz uwalnia enzymy degradacyjne, w tym enzym rozkładający ten typ połączeń. Owoce są następnie pozostawiane na kilka dni w ciepłym miejscu, gdzie brązowieją, a glukozyd rozpada się uwalniając aromat. Po wysuszeniu owoce, pierwotnie w formie spłaszczonych torebek, kurczą się do cienkich laseczek i w takiej formie są sprzedawane.
Fermentujące owoce wanilii

Wanilia była znana już od dawna wśród ludów ameryki środkowej, przy czym pierwszymi którzy ją uprawiali byli prawdopodobnie Totonakowie, podbici przez Azteków na początku XV wieku. Nazywali ją tlilxochitl - "czarnym kwiatem" od wyglądu dojrzałych owoców, pękających przy wysychaniu na kilka płatów. Cenili ją jako jeden z boskich pokarmów. Przyprawiali nią czekoladę, będącą wówczas gęstym napojem z tłuczonych owoców kakaowca, kukurydzy i masła. W takiej też formie poznał ją w 1540 roku Cortez, pierwszy europejski zdobywca tych ziem. Nazwa rośliny jest zdrobnieniem hiszpańskiego słowa i dosłownie oznacza "mały strączek".

Przez długi czas, z oczywistych względów, jedynym producentem wanilii był Meksyk. Uprawy w innych miejscach, w tym na francuskiej wyspie Reunion, nie udawały się z powodu braku zapylających jej kwiaty pszczół bezżądłowych. Jako pierwszy zauważył to botanik Charles Morren, który zaproponował skomplikowaną metodę sztucznego zapylania, ta jednak nie przyjęła się. Monopol meksyku upadł jednak za sprawą pewnego chłopca - 12-letniego Edmonda Albiusa, niewolnika z plantacji na Reunion. W roku 1841 odkrył bardzo prostą metodę zapylania - w głąb kwiatka wsuwa się patyczek lub trawkę i podnosi przesłonę oddzielającą kwiaty męskie od żeńskich, zapobiegającą samozapyleniu. Prostym ruchem kciuka przenosi się pyłek na słupki i tak, po zaledwie kilku sekundach, kwiat zostaje zapylony.
W ten sposób wyspa stała się znaczącym producentem wanilii a ceny przyprawy znacznie spadły. Francuscy emigranci przynieśli metodę na Madagaskar - dziś wyspa ta jest zaraz po uprawach na Indonezji drugim światowym producentem. Sam Albius nie wiele skorzystał na swym odkryciu - po zniesieniu niewolnictwa pracował jako kucharz, po kradzieży biżuterii trafił na kilka lat do więzienia. Przez ostatnie lata żył z niewielkiego zasiłku przyznanego mu w podzięce za wkład w uprawy i zmarł w biedzie.

Główny składnik zapachowy wanilinę odkrył Theodore Gobley, znany też z odkrycia lecytyny i wyodrębnienia cholesterolu z jajek kurzych, który po prostu odparował do sucha ekstrakt waniliowy i odmył wanilinę z osadu gorącą wodą. Szybko zorientowano się że jest to prosty związek fenolowy, zawierający grupę aldehydową, hydroksylową i metoksylową, i zaczęto szukać sposobu jak też tu tanio ją z czegoś otrzymać 

Znano już dosyć dużo związków zawierających podobne ugrupowania, jednak pierwszymi którzy znaleźli odpowiednią substancję byli niemieccy chemicy Tieman i Haarmann. Wyizolowali oni z kory i wiosennego soku sosny glikozyd koniferynę, łatwo rozkładający się do alkoholu koniferylowego, którego cząsteczka była podobna do waniliny - zamiast grupy aldehydowej miała krótki łańcuch alkenowy. Można go było łatwo utlenić za pomocą chromianu potasu, zaś z końcowej mieszaniny destylowano powstającą wanilinę. Nie był to najlepszy sposób - koniferynę można było otrzymywać z drzew tylko wiosną, w niedużych ilościach, toteż trudno było wyprodukować w ten sposób dużą ilość związku, ponieważ jednak naturalna wanilia była niezwykle droga, obaj chemicy założyli firmę Vanilinfabrik, całkiem nieźle zarabiając.
Niedługo potem Haarmann znalazł związek jeszcze łatwiej dostępny - eugenol. Jest to silnie pachnący związek stanowiący główny (do 90%) składnik olejku goździkowego, a także olejku z liści cynamonu. Każdy kto bywa czasem u dentysty musiał się z nim zetknąć - w mieszaninie z tlenkiem cynku służy do tymczasowego wypełniania ubytków. Oba olejki były zdecydowanie tańsze niż glikozyd z soku sosny, więc i końcowy związek był tańszy. Syntezę prowadzono w dwóch etapach - eugenol izomeryzowano w środowisku zasadowym do izoeugenolu, po czym utleniano nadmanganianem lub ozonem:

Była to pierwsza synteza pozwalająca otrzymywać wanilinę na skalę przemysłową.
Równocześnie wykryto inną drogę.

Reakcja Reimera-Tiemanna to jedna z klasycznych dróg syntetycznych, pozwalająca przyłączać do związku fenolowego grupę aldehydową. Związek jest mieszany z trichlorometanem czyli chloroformem, i poddawany działaniu stężonej zasady. Chlorek w wyniku odszczepienia halogenów zamienia się w wysoce reaktywny karben, który przyłącza się do pierścienia i hydrolizuje. W ten sposób można na przykład otrzymać kwas salicylowy z fenolu.
Równocześnie znany był już wówczas gwajakol, silnie aromatyczny związek, będący częstym składnikiem syropów na kaszel, otrzymywany bądź z drzewa gwajakowego, bądź z kreozotu - wodnistej pozostałości po suchej destylacji drewna. Jego cząsteczka stanowi właściwie wanilinę bez grupy aldehydowej. Nie wiele trzeba było czasu aby połączyć jedno z drugim, i już w 1876 odkrywca reakcji Reimer , założył z Haarmannem osobną firmę, produkującą jeszcze tańszą wanilinę. Paradoksalnie najbardziej intratnym odkryciem tej dwójki chemików był pewien jonon otrzymywany z karotenu i stanowiący aromat o zapachu leśnych fiołków. Współczesnym spadkobiercą firmy jest Symrise, producent aromatów i składników perfum.
Gwajakol miesza się z chloroformem i poddaje działaniu silnej zasady. Po syntezie i hydrolizie powstaje wanilina:


Te dwie metody - utlenianie eugenolu i podstawianie gwajakolu, były powszechnie używane na przełomie XIX/XX wieku, a syntetyczna wanilina była używana do stworzenia pierwszego cukru wanilinowego, którego najbardziej znanym producentem był i jest Dr. Oetker, który zresztą miał w przedwojennej Polsce swoje fabryki. Najstarsza informacja o istnieniu tego produktu w polskiej prasie jaką znalazłem, pochodziła z roku 1881.[1] Produkt już wówczas nazywał się "Cukier Wanilinowy" zatem nie jest tak, jak sądzą ci, którzy brak wanilii w nazwie zauważyli niedawno, że dawniej producenci oszukiwali i dopiero niedawno zmienili nazwę.
Jednak chemicy nie byli by sobą, gdyby nie szukali jeszcze prostszej drogi, i rzeczywiście, już w latach 30. XX wieku znaleźli wyjątkowo tanie źródło. Mieliśmy już sok sosny, goździki i kreozot, więc pulpa drzewna nie będzie chyba zaskakująca...

Produkcja papieru zasadniczo polega na rozwłóknieniu drewna aż do otrzymania pulpy, od której oddziela się niewłóknistą ligninę, a pozostałą zawiesinę włókien odsącza na sitach, walcuje, suszy itp. aż do otrzymania arkuszy. Bezwartościowa dla papiernictwa lignina stanowi niewłóknistą substancję spajającą łańcuchy celulozy, będąca mieszaniną usieciowanych polifenoli i aromatycznych kwasów organicznych połączonych przypadkowo we wszelkich możliwych kombinacjach. Wśród podstawowych jednostek częsty jest też  alkohol koniferylowy - ten sam który Tieman i Haarmann otrzymywali z soku sosny. Nie jest oddzielana od pulpy tylko przy produkcji gładkiego papieru gazetowego. Stopniowe utlenianie i tworzenie sprzężonych chinonów jest przyczyną żółknięcia takiego papieru.
Do rozdziału używa się głównie trzech metod - siarczanowej, zasadowej i siarczynowej. W tej drugiej, dziś najczęstszej, pulpa jest alkalizowana silnymi zasadami, co powoduje przejście większości cząsteczek kwasów i fenoli do rozpuszczalnej formy anionowej. W tej pierwszej, nazywanej też procesem Kraft (od niemieckiego słowa "siła" a nie, jak można się spotkać, od nazwiska) pulpa poddawana jest działaniu roztworu siarczku sodu w środowisku silnie zasadowym. W tym trzecim z kolei pulpa jest mieszana w warunkach kwaśnych z siarczynami sodu i wapnia.
Fragment przykładowej struktury ligniny - widoczne liczne części o budowie waniliny

Właśnie ten trzeci jest tu dla nas interesujący. Bardzo dużo jednostek ligniny jest połączonych wiązaniami eterowymi i aldehydowymi, które rozpadają się w warunkach kwaśnych, chętnie w zamian przyłączając resztę kwasu siarkowego IV. Otrzymujemy w efekcie rozpuszczalne fragmenty sieci z grupami sulfonowymi przyłączonymi przy pierwszym węglu podstawnika przy pierścieniach aromatycznych, czyli lignosulfoniany. Bywają one suszone i spalane dla otrzymania energii i odzysku siarki, ale z reguły używa się ich w charakterze lepiszcza substancji mineralnych i betonów, czy do wytwarzania lżejszych płyt gipsowych. Bywają też używane na drogach w charakterze środka powstrzymującego pylenie, jako kleje i impregnaty płyt wiórowych, a w przemyśle do otrzymania DMSO - cennego rozpuszczalnika. Ponieważ zaś zawierają w swej budowie fragmenty cząsteczki waniliny, mogą być użyte do jej produkcji. Odpowiednio przeprowadzone utlenienie odszczepia boczne łańcuchy z grupami sulfonowymi, pozostawiając grupę aldehydową. Powstającą wanilinę oddziela się przez ekstrakcję lub wykrystalizowanie.
Od wprowadzenia w latach 30-tych, proces produkcji z ligniny stanowił główny stosowany; w niektórych latach kanadyjscy i norwescy producenci wytwarzali tak 60% światowej waniliny, jednak w miarę wypierania procesu siarczynowego przez bardziej ekonomiczny siarczanowy, produkcja spadała. Po wycofaniu się firm kanadyjskich, obecnie wanilinę produkuje w ten sposób jeden norweski producent, i stanowi ona niewielki procent rynku. Dziś przeważająca część waniliny powstaje przez syntezę z gwajakolu i katecholu.
Dość ciekawy typ syntezy wprowadził w 2000 roku koncern Rhodia - kwas ferulowy otrzymywany z otrębów jest poddawany działaniu bakterii, przerabiających go na właściwy pachnący związek. Produkt taki jest dosyć drogi ale ma jedną ważną dla przemysłu spożywczego cechę - ponieważ nie jest syntetyczny, może być na opakowaniach oznaczany jako naturalny i być stosowany w żywności organicznej
Cukier Waniljowy - reklama prasowa z 1936 roku.

Wanilina z ligniny różniła się od reszty jedną specyficzną cechą - miała mocniejszy aromat. Jak się okazało była zanieczyszczona podobnym związkiem, mającym zamiast grupy metoksylowej, grupę etoksylową. Związek ten, nazywany etylowaniliną, ma zapach ok 3-4 razy silniejszy od samej waniliny i dlatego bardzo chętnie używa się go do aromatyzowania, jednak aromat jest ostrzejszy i mniej słodki. Dziś otrzymuje się etylowanilinę w osobnym procesie.
Redukując wanilinę otrzymujemy alkohol wanilinowy, o nieco słabszym ale trwalszym zapachu też używany do aromatyzowania. Utleniając, otrzymamy kwas wanilinowy o słabym zapachu, bardziej owocowym; w dużych ilościach występuje w owocach Acai. Zastępując grupę aldehydową, grupą acetylową (resztą kwasu octowego) otrzymamy acetowanilon, związek występujący w wielu ziołach, stosowany jako lek przy miażdżycy. Innymi pochodnymi są izomery w których grupa metoksylowa jest położona w innym miejscu, pozbawione charakterystycznego aromatu. Z alkoholu wanilinowego można otrzymać eter butylowy, który ma właściwości rozgrzewające i bywa używany w kosmetykach. Nic zresztą dziwnego - aminowy analog tego związku to kapsaicyna, piekący składnik ostrej papryki.

Jak zapach czystej waniliny ma się do zapachu laski wanilii? Mniej więcej tak jak mentol do mięty. Prócz głównego składnika, decydującego o podstawowym aromacie, wanilia zawiera wiele innych substancji, które często w stanie czystym mogą pachnieć nawet nieprzyjemnie, lecz w sumie składają się na intrygujący, obszerny aromat. Gdy wąchałem laskę o tyle dobrze zachowaną, że nie wyschniętą na wiór, oprócz ostrego aromatu waniliny wyczuwałem też nutę woni liści i domieszki zapachów kwiatowych a nawet siana. Rzeczywiście - zawiera pachnący owocowo piperonal, będący też składnikiem woni heliotropu; migdałowy furfural, pachnący kozą kwas heksanowy, korzenny eugenol czy balsamiczny cynamonian metylu, w ilościach znacząco mniejszych, ale wypływających na całkowity bukiet.
Wanilia ma ponadto korzenny i lekko ostry smak, może być więc przyprawą również smakową. Zwykle jest używana w formie całych strąków, które po rozkruszeniu dodawane są do potraw, a także jako ekstrakt waniliowy. Można go dosyć łatwo otrzymać, zalewając rozcięte wzdłuż kawałki wanilii przynajmniej 40% alkoholem i odstawiając aż płyn nabierze głęboko brązowej barwy. Ekstrakt ten może być dodawany w niewielkich ilościach do dań, tak samo jak syntetyczna esencja wanilinowa.
A cukier waniliowy?
Najprościej można go zrobić zasypując laskę cukrem w słoiku i po zakręceniu odstawić na dwa-trzy tygodnie, aż cukier przesiąknie zapachem. Taką laskę można użyć jeszcze kilka razy - jednak aromat nie będzie wówczas tak głęboki. Aby był pełniejszy lepiej jest zemleć w młynku do kawy laskę wanilii z kilkoma łyżkami cukru, potem rozmieszać otrzymany brązowy puder z większą ilością cukru i przetrzymywać w słoiku. W ten sposób dość duża ilość cukru nasączy się aromatem, a cząstki wanilii dodadzą do niego swój pełny zapach.
Jeszcze prostszy sposób polega na nasączeniu łyżki cukru ekstraktem waniliowym i wysuszenie. Otrzymany brązowy cukier należy należy zetrzeć, zmieszać w słoiku z większą ilością cukru i odstawić do przegryzienia. Zastanawiam się czy nie dałoby się uzyskać miodu waniliowego, poprzez zalanie miodem wielokwiatowym laski wanilii i od czasu do czasu mieszanie zawartości aby substancje rozprowadziły się równomiernie. Nie próbowałem tego, bo pomysł dopiero co przyszedł mi do głowy, ale wydaje się być bardzo dobry.

Na koniec zabawna ciekawostka - jak już pisałem, wanilina może być otrzymywana z ligniny będącej składnikiem drewna, ale też zdrewniałych części roślin i słomy. Trawa i słoma stanowią główny składnik pożywienia zwierząt hodowlanych, na przykład krów. Bakterie żyjące w ich dwuczęściowym żołądku są w stanie strawić celulozę i zamienić w możliwe do metabolizowania związki. Nie robią tego jednak z ligniną, stanowiącą znaczny procent masy odchodów. Jak wykazała japońska badaczka Mayu Yamamoto, za pomocą prostego procesu ciśnieniowego, można rozłożyć tą masę otrzymując wanilinę, która za sprawą łatwo dostępnego surowca byłaby bardzo tania. Niestety o ile produkcja zostanie rozpoczęta, związek będzie używany tylko do tworzenia nawaniaczy i kosmetyków, bo w żywności nikt by go nie chciał, choćby był nie wiem jak oczyszczony[2]. Już zresztą staje się to na pewnych panikarskich stronach powodem dla bojkotu sztucznej waniliny, choć tą produkuje się głównie z gwajakolu.
Okoliczności odkrycia przyczyniły się do nadania Mayu nagrody Ig-Nobla w roku 2007.

Edit: zmieniłem nieco przypis bo znalazłem jeszcze starszą wzmiankę o sztucznej wanilinie. Dodaję też treść tej wzmianki, tak dla ciekawych.
-------------
Żródła i przypisy:
* Siarczynowy proces produkcji papieru
http://en.wikipedia.org/wiki/Vanillin
* http://en.wikipedia.org/wiki/Vanilla
http://de.wikipedia.org/wiki/Vanillin
* http://en.wikipedia.org/wiki/Edmond_Albius

[1] Dwutygodnik dla Kobiet: pismo belletrystyczne i naukowe 1881.12.10 R.2 Nr6, WBC Poznań
Była to krótka notka:  "Dla Gospodyń ważny mamy do zapisania wynalazek.
Wiadomo, jak jest drogą niezbędna w domowej apteczce wanilia, która odtąd zastąpiona być może przez sztucznie wyrabianą w a n i l i n ę, przewyższając tamtę trwałością, a  nieustępującą jej ani w zapachu, ani pod względem innych własności. Wyrabia się nowy ten materiał ze skrystalizowanego soku drzew iglicowych, a sprzedawany bywa w postaci olejku, lub cukru wanilinowego
." 
[2] http://www.terradaily.com/reports/Japanese_Researchers_Extract_Vanilla_From_Cow_Dung.html