informacje



Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty

czwartek, 7 sierpnia 2014

Kwas co ma gaz

W letnie, upalne dni, najchętniej nic byśmy nie robili, tylko leżeli w cieniu i popijali coś chłodnego. Na przykład wodę. Taką gazowaną, z bąbelkami i szczypiącym, kwaśnym posmaku. I być może czasem zastanowi nas, jaki to gaz i jaki kwas...

Dwutlenek węgla jest bezbarwnym i w zasadzie bezwonnym gazem cięższym od powietrza, stanowiącym stale niewielki procent składu atmosfery. Został odkryty dosyć wcześnie - już w XVII wieku van Helmont zauważył, że jeśli masa popiołu po spaleniu węgla jest znacząco mniejsza od pierwotnej masy, to reszta musi ulegać zamianie w formę gazową. Ówcześni identyfikowali go z flogistonem - pierwiastkiem palności - i dalej się tą sprawą nie zajmowano. Dopiero w 1750 roku szkocki lekarz Joseph Black, znany też z badań nad ciepłem utajonym, poddał badaniom gaz powstający z potraktowania wapienia kwasem, stwierdzając, że jest różny od powietrza, ciężki i duszący, oraz że wytrąca osad z roztworu wapna gaszonego. Korzystając z tej ostatniej reakcji, stwierdził że występuje normalnie w powietrzu i w większych ilościach w tchnieniu zwierząt i ludzi. Późniejsi badacze doszli do tego, że gaz jest połączeniem tlenu i węgla i że reakcję czasem można odwrócić (przy spalaniu magnezu w dwutlenku węgla powstaje sadza), jednak dla nas istotniejsze jest odkrycie Josepha Priestly'a, trochę teologa a trochę przyrodnika-hobbysty, który badając przebieg fermentacji w miejscowym browarze, zainteresował się "zastałym powietrzem" - warstwą gazową nad fermentującą kadzią, uważaną za pracowników za niezdrową i od której zdychały myszy jeśli dostały się pod jej wpływ.
Wytwarzanie wody sodowej - rysunek Priestley'a z 1772 roku

Eksperymentując, umieścił nad kadzią miskę z wodą, chcąc sprawdzić rozpuszczalność tego gazu. Po zlaniu musującego roztworu stwierdził, że woda nabrała przyjemnego, lekko kwaśnego posmaku, a nawet dał go spróbować znajomym, twierdząc że to orzeźwiający napój bez alkoholu. Kilka lat później opisał go w artykule, dodając przepis na sztuczne otrzymanie - po zwilżeniu kredy kwasem siarkowym, powstający gaz przeprowadzał rurką do wody i po przepuszczeniu większej ilości otrzymywał napój, który uważał za bardzo podobny do naturalnych wód mineralnych i polecał na szkorbut. W zasadzie jednak nie traktował odkrycia inaczej jak ciekawostki i nie sądził, że znajdzie zastosowanie. Tymczasem producenci wód mineralnych powinni mu postawić pomnik - odkrycie, że zwykła woda staje się smacznym napojem po rozpuszczeniu w niej pospolitego gazu, do dziś przynosi im ogromne zyski.
Pierwszym, który wpadł na to, że jest to znakomity pomysł na interes, był niejako Jacob Schweppe, który w roku 1783 założył firmę Schweppes, istniejącą zresztą do dziś, produkując wody gazowane mające naśladować wody mineralne z naturalnych źródeł. Nieco później dla polepszenia smaku, do nagazowanej wody zaczęto dodawać nieco sody oczyszczonej, tworząc napój nazywany odtąd wodą sodową. I tak zaczął się przemysł napojów gazowanych.

Szybko jednak chemicy zaczęli się zastanawiać, dlaczego po rozpuszczeniu gazu, woda staje się kwaśna. Musi powstawać jakiś kwas - uznali - i nazwali go kwasem węglowym. W polskiej nomenklaturze dwutlenek węgla zaczął być z tego powodu nazywany niedokwasem węglowym. Taki też stan rzeczy trwał przez długi czas, aż zaczęły się problemy z wyizolowaniem czy choćby wykryciem tego kwasu w wodzie. Badania absorpcji w podczerwieni nie wykryły aby występował w choćby najbardziej nasyconych roztworach. W zamian za to wykrywano jony węglanowe i wodorowęglanowe, stąd też powstała koncepcja wedle której kwas węglowy nie istnieje. Jeszcze ja w technikum byłem upominany aby nie zapisywać jego cząsteczki w równaniu rozpuszczania dwutlenku węgla.


Jest to w pewnym stopniu podobna sytuacja jak z "wodorotlenkiem amonu". Rozpuszczenie amoniaku w wodzie da nam roztwór o zasadowym odczynie, toteż postulowano powstawanie w wodzie wodorotlenku amonu i przez długi czas zapisywano go w ten sposób. Dopiero potem dokładne badania wykazały, że cząsteczka taka nie powstaje - woda wymienia się protonem z amoniakiem, i tworzy się osobny jon wodorotlenkowy i osobny amonowy pozostające w równowadze. Wydawało się zatem, że tu jest podobnie - dwutlenek łączy się z wodą biorąc tlen i wodór do utworzenia jonu wodorowęglanowego, a pozostawiając wolny kation wodorowy; wodorowęglan dysocjuje dalej do anionu węglanowego, zaś kwas węglowy się nie tworzy. I wszystko było w porządku aż nie odkryto, że pogłoski o jego śmierci są mocno przesadzone.

Aby otrzymać czysty i stabilny kwas węglowy, należało zastosować dość specyficzne warunki - mieszaninę wody i dwutlenku węgla zamrożono i umieszczono pod niskim ciśnieniem, po czym napromieniowano - promieniowanie pozwoliło na połączenie dwóch różnych cząsteczek bez ogrzewania. Następnie zastosowano sublimację wody pod niskim ciśnieniem, otrzymując czysty, suchy związek.
Jak się okazało, bezwodny kwas węglowy jest dosyć trwały - obliczenia teoretyczne pokazały że czas połowicznego rozkładu to ponad sto tysięcy lat, ale śladowe ilości wody przyśpieszają ten rozkład gwałtownie, nawet milion razy[1].
Udało się także otrzymać gazowy kwas węglowy, trwały do temperatury -30 stopni, który w takiej fazie chętnie tworzy trwalszy dimer[2]

Skoro kwas ten istnieje, to jak jest z jego obecnością w wodzie mineralnej?
Gdy tylko zaczynamy nasycać wodę dwutlenkiem węgla, zaczyna on być hydratowany. W takiej formie każda cząsteczka tlenku zostaje otoczona cząsteczkami wody, lecz nie następuje pomiędzy nimi reakcja. Ilość rozpuszczającego się w ten sposób gazu zależy od ciśnienia - im wyższe, tym lepsza rozpuszczalność. W takiej formie występuje około 99% rozpuszczonego w wodzie związku.

Część jednak reaguje z wodą dając jako produkt przejściowy kwas węglowy:
CO2 + H2O → H2CO3
Jak wykazały badania, związek ten bardzo szybko i łatwo odszczepia jeden proton, przechodząc w jon wodorowęglanowy. Stała równowagi pokazuje, że kwas ten jest nawet mocniejszy od cytrynowego. Silne przesunięcie równowagi w stronę wodorowęglanów powoduje jednak, że niemal natychmiast prawie cały powstający kwas węglowy zamienia się w tą formę:
H2CO3 is in equilibrium with HCO3 + H+

Jon wodorowęglanowy może ulegać dalszej dysocjacji, rozpadając się na jon węglanowy:
 HCO3 is in equilibrium with CO32− + H+
Jednak reakcja ta następuje powoli, i zaczyna nabierać znaczenia w warunkach silnie zasadowych.

Wszystkie te procesy są procesami równowagowymi, toteż zachodzą równocześnie w obie strony, choć z różną szybkością, a obserwowany stan jest wypadkową różnie szybkich równoczesnych reakcji. Można to porównać do szeregu naczyń do których woda może wpływać i wypływać, aż zależnie od szybkości wypływu i dopływu stabilizuje się na pewnym poziomie.
Gdy zaczniemy wprowadzać dwutlenek węgla do wody, będzie to czynił niechętnie, jednak gdy się rozpuści większość będzie występować w formie zhydratowanej. Z tej ilości pewna część będzie zamieniać się w kwas węglowy. Ten ma dwie możliwe drogi rozpadu - albo zamieni się z powrotem w dwutlenek węgla, co czyni chętnie, albo w wodorowęglan, co czyni równie szybko. To że w ogóle występuje w roztworze jest wynikiem tego, że wszystkie procesy są pewnymi równowagami odwracalnych reakcji - większe ciśnienie gazu naprodukuje więcej kwasu węglowego który natychmiast rozpada się w wodorowęglan; obniżenie ciśnienia powoduje rozpad obecnego kwasu węglowego ale jest on odtwarzany z wodorowęglanów.
Pod ciśnieniem atmosferycznym w wodzie pozostającej w kontakcie z dwutlenkiem węgla, może się rozpuścić ok. 0,1 mmol, z czego 1% przechodzi w wodorowęglan a 0,01% w kwas węglowy. Jonów węglanowych powstają niewykrywalne ilości. Roztwór taki ma pH=5,6 zatem jest lekko kwaskowaty. Pod ciśnieniem ok. 1-2 atmosfer, jakie to ciśnienia są stosowane w butelkowanej wodzie mineralnej, rozpuszcza się 8,5 mmol gazu, z czego 1% ma postać wodorowęglanu i niemal tyle samo formę kwasu węglowego. Roztwór taki ma pH =3,5 a więc podobne do soku pomarańczowego.

Co więc z tego wynika ostatecznie? Większość rozpuszczonego dwutlenku węgla występuje w wodzie w formie zhydratowanej obojętnej cząsteczki, a z pozostałej części większość w formie wodorowęglanów. A kwas? Występuje ale jako dynamiczna faza przejściowa - nieustannie tworzy się i rozpada istniejąc w ilościach tak niewielkich, że nieistotnych dla określenia kwasowości i trudnych do wykrycia. Ale jest.
------
* http://en.wikipedia.org/wiki/Carbonic_acid
* http://de.wikipedia.org/wiki/Kohlens%C3%A4ure
* http://en.wikipedia.org/wiki/Carbonated_water
* http://en.wikipedia.org/wiki/Joseph_Priestley

[1] Thomas Loerting, Christofer Tautermann, Romano T. Kroemer, Ingrid Kohl , Andreas Hallbrucker , Erwin Mayer. and Klaus R. Liedl,  On the Surprising Kinetic Stability of Carbonic Acid (H2CO3), Angewandte Chemie International Edition Volume 39, Issue 5, pages 891–894, March 3, 2000
[2] Hinrich Grothe et al.,  Spectroscopic Observation of Matrix-Isolated Carbonic Acid Trapped from the Gas Phase, Angewandte Chemie International Edition Volume 50, Issue 8, pages 1939–1943, February 18, 2011

środa, 7 maja 2014

Chemiczne ogrody

Każdy pewnie kiedyś słyszał o tym doświadczeniu - do odpowiedniego roztworu wrzuca się małe kryształki, i po chwili zaczynają z nich wyrastać łodyżki i gałązki, podobne do fantastycznych wodorostów albo kwiatów. Mieliśmy coś takiego w małej skali na drugim roku:

Pytanie zatem - jak to powstaje i jak można coś takiego samemu zrobić?

Sama procedura sporządzania jest bardzo prosta - naczynie napełnia się roztworem krzemianu sodu, po czym wrzuca do niego kryształki soli metali przejściowych. Wokół kryształka powstaje mała banieczka, która uwypukla się aż z jej szczytu wysnuwać się zaczyna cienka wić, czasem rozgałęziająca się. Stopniowo wzrasta aż dotrze do powierzchni gdzie czasem jeszcze jest zdolna wyprodukować pływające zgrubienie. Gdy "roślinki" przestają rosnąć, naczynie można zamknąć i postawić w widocznym miejscu.
Krzemian sodu to inaczej szkło wodne, możliwe do dostania jako środek konserwujący do kamienia i betonu, natomiast sole metali przejściowych powinny być możliwe do kupienia w sklepach z odczynnikami. Samo wykonanie we własnym zakresie nie jest więc tak skomplikowane.
Mechanizm powstawania takich tworów także.

Szkło wodne, to roztwór krzemianów sodu i potasu, które można otrzymać stapiając krzemionkę z wodorotlenkami tych pierwiastków. Powstałe krzemiany tworzą gęsty, dosyć lepki roztwór o lekko opalizującym wyglądzie. Prawdopodobnie roztwór nie zawiera swobodnych anionów krzemianowych, lecz różnej wielkości połączenia liniowe i rozgałęzione aż do rozmiaru cząstek koloidalnych. Jest to  i tak dobrze, bo z większością metali kwas krzemowy daje sole nierozpuszczalne.
Dodawane przez nas sole zwierają właśnie te metale, dające nierozpuszczalne krzemiany, dlatego gdy wrzucimy do roztworu kryształek, powstanie na nim natychmiast nierozpuszczalna warstewka krzemianu i reakcja ustanie. Warstewka ta nie przepuszcza krzemianów, więc reakcja nie może postępować dalej.
Zarazem jednak jest to warstewka na tyle cienka, iż przepuszcza wodę, stanowi więc błonę półprzepuszczalną. Gdy woda zacznie przenikać pod błonkę, rozpuści kryształek soli wewnątrz, tworząc bardzo stężony roztwór.
Prawa osmotyki mówią, że jeśli dwa roztwory o tym samym rozpuszczalniku ale różnych stężeniach przedzielimy membraną, przepuszczającą rozpuszczalnik, to zacznie on przenikać z roztworu mniej stężonego do bardziej. Ma to źródło w prostych prawach - od strony roztworu bardziej rozcieńczonego w membranę uderza w tym samym czasie więcej cząsteczek wody niż od strony bardziej zatężonego, można więc mówić o wyższym ciśnieniu cząstkowym; jeśli zaś część uderzających w błonkę cząsteczek może przez nią przeniknąć, to będzie następował przepływ rozpuszczalnika. W momencie gdy ciśnienia cząstkowe po obu stronach się wyrównają, bo roztwór bardziej rozcieńczony się zatężył a bardziej stężony rozcieńczył, przepływ ustaje.

Przepływ ten może, w sytuacji gdy błonka otacza pewną zamkniętą przestrzeń, doprowadzać do znacznego wzrostu ciśnienia, lub zmienić poziom roztworu, co też następuje w naszym przypadku - błonka wokół kryształu napina się, rozpierana rosnącą objętością roztworu, aż pęka. Gdy tylko błonka pęknie w jakimś punkcie, wokół wylewającej się porcji roztworu soli powstaje na nowo cienka błonka krzemianów. Przez błonkę do środka wnika woda, rozpuszcza się nowa porcja soli a ciśnienie rośnie do kolejnego pęknięcia.
Wzrost roślinek jest więc wynikiem ciągłego rozrywania wciąż powstającej błonki, i trwa do momentu aż rozpuści się cała sól z wrzuconego kryształka, a stężenia między środkiem a zewnętrzem się wyrównają.
Jeśli chodzi o kształt, to jest determinowany przez dwie siły - ciśnienie hydrostatyczne i siłę wyporu. Wielkość ciśnienia hydrostatycznego zależy od wielkości słupa roztworu nad danym punktem. O góry rosnącej błonki słup ten, a więc i ciśnienie, są nieco niższe niż przy dnie, dlatego tam najłatwiej jest ciśnieniu wewnątrz rozerwać błonkę i gałązka rośnie do góry. Dodatkowo roztwory soli w pęcherzyku są zwykle nieco lżejsze niż szkło wodne i dlatego powstająca gałązka zachowuje pion. Jakieś znaczenie mają też pęcherzyki powietrza przyczepiające się do błonki.

Kolor powstającej roślinki zależy od dodanej soli. Chlorek wapnia i siarczan glinu dadzą pędy białe, siarczan miedzi niebieskie, chlorki chromu III, niklu II i żelaza II dadzą rośliny zielone o różnych odcieniach, chlorek kobaltu da roślinę fioletowo-różową. Kształt pędu bardziej zależy od wielkości i kształtu pierwotnej grudni niż od rodzaju soli. Swój wpływ ma też stężenie szkła wodnego, od którego zależy grubość pędów.
Zastanawia mnie czy efekt taki dałyby kryształy kwasu cytrynowego, który powinien pokrywać się błonką uwodnionej krzemionki.

Doświadczenie to znane jest od dawna, i znane są liczne jego warianty. do najciekawszych należy chyba eksperyment na międzynarodowej stacji kosmicznej, gdzie chciano sprawdzić, czy w stanie nieważkości roślinki przybiorą jakieś ciekawe kształty - okazało się że brak kierowania przez ciśnienie hydrostatyczne, powoduje powstawanie nieregularnych odgałęzień skierowanych w różne strony.

wtorek, 29 kwietnia 2014

Chemiczne formuły w filmach

Filmy posługują się często nauką jako jednym z wątków. Czasem głównym, czasem pobocznym. Nauką tą może być na przykład chemia. Dlatego też czasem da uwiarygodnienia danej sceny, w kadrze pojawiają się wzory albo symulacje cząsteczek związków chemicznych. Nie mają one zwykle żadnego znaczenia dla fabuły, niemniej ciekawą kwestią jest to, czy są one możliwe i na ile wobec tego twórcy filmu postarali się zadbać o realia. Kilka najbardziej charakterystycznych przypadków zebrałem poniżej

Kakao H2O
W świetnym polskim musicalu "Zapomniana melodia" z 1938 roku, jednym z wątków jest wynalazek ojca głównej bohaterki, pensjonariuszki Heleny, który jest przemysłowcem i producentem kosmetykow. Jego najnowszy pomysł to mydło o smaku czekolady
  Mające postać czarnej, elastycznej kulki mydło pachniało i smakowało jak ciemna czekolada, ale myło tak samo dobrze. Przemysłowiec musi się nauczyć formuły na pamięć i zniszczyć papierowe kopie - problem w tym że z pamięcią ostatnio u niego nie tęgo. W jednej ze scen udaje mu się zapamiętać skład przez ułożenie piosenki, do melodii granej przez córkę na pianinie - tylko że melodia ta jest równocześnie piosenką jej narzeczonego ułożoną dla niej i śpiewaną przezeń przy różnych okazjach, co jak to w komedii omyłek częste, prowadzi do dodatkowego zamieszania.
Dla mnie najbardziej interesującą sprawą jest podany skład masy mydlanej, aczkolwiek trochę różni się on w partii w której jest czytany z kartki od formy w jakiej jest śpiewany.
Najpierw prezes odczytuje:
"NAO HO5, Fluidum Amylium sulphuricum 0,04; Natrum bicarbonicum 2,003; Natrium causticum 3,05, Natrium chloratum 0,01; 2 unc Oleum aromat, Caccao, H2O.
Hydragium, acidium, Folia me(n)tae"

.

Później gdy uczy się formuły ponownie NAO HO5 zamienia się na NaOH 0,5 (czytane przy sekretarzu) lub NaOH O5 (czytane samemu). W wersji śpiewanej brzmi to:
En A, O Ha, O-pięć!
Fluidium amilium sulfuri
(niezrozumiałe) um puri
Na to działaj sodą i ługiem
do tego po czasie niedługiem
i sól i krem.
Olejek bezwonny dolej
przez lejek - dwie uncje nie mniej
kakao, ha dwa o
A potem to wszystko grzej!
Hydralium acidium i mięta...
Już wiem!



Fluidium amylium suphuricum to dosłownie "płynny siarczan amylu" .  Musi to być zatem jakiś alkilosiarczan, podobny do larylosiarczanu sodowego, będącego detergentem. Zatem związek musiałby rzeczywiście mieć właściwości myjące.
Natrium Bicarbonicum, to wodorowęglan sodu, nazywany też niekiedy bikarbonatem, także będący składnikiem środków czyszczących
Natrium causticum to soda kaustyczna, czyli wodorotlenek sodu, niezbędny do zmydlenia tłuszczów
Natrium chloratum to chlorek sodu czyli sól kuchenna
Oleum to olej, na kartce da się odczytać skrót aromat, choć chodziło o olej bezwonny
Ostatnie składniki to woda, kakao i liść mięty, nie jestem pewien hydragium acidium - jest hydrargium, czyli rtęć, raczej zły składnik mydła, zaś jako acidium może służyć dowolny kwas, dodany dla wyrównania odczynu. Początkowe N.A.O. to zapewne skrót jakiegoś łacińskiego wyrażenia, nie mogę rozszyfrować.

Ogółem, biorąc pod uwagę że składniki układano do rymu i pod melodię filmowego szlagieru "Już nie zapomnisz mnie", formuła jest zaskakująco logiczna - rzeczywiście z tych składników dałoby się stworzyć mydło o kakaowym kolorze i zapachu jak sądzę czekolady miętowej.


CaFe BiBa
W brawurowej komedii Machulskiego "Kingsajz"  fabuła opiera się o poszukiwanie formuły eliksiru, pozwalającej krasnoludkom z Szuflandii powiększyć się do "dużego rozmiaru". Szyfr jakim zostaje owa formuła przekazana, stanowi jeden z najbardziej znanych przykładów swoistej "chemistry speach" czyli układania wyrazów z symboli pierwiastków. Takie pierwiastkowanie słów może w pewnym stopniu stanowić nerdowski szyfr, jeśli tylko zamienić zapis pierwiastków na liczby atomowe, na przykład takie pytanie egzystencjalne: 84 27 59-89-8-74-89 64-66 42-30-11 36-33-6?

Skład został zaszyfrowany w formie wyrażenia "cafe biba bekonik woda kranówa" i odczytany jako CaFe BiBa BeCoNiK (lub BeCONiK) Woda, przy czym jak się potem okazało, niezbędna była woda z pewnego konkretnego kranu. Jaki jednak mógłby być skład takiej mieszaniny? To już zależy od kolejności dodawania.

Najrozsądniejsze wydaje się dodawanie składnikow począwszy od najbardziej aktywnych. Jeśli chodziłoby o metale w formie pierwiastkowej, możliwa jest taka kolejność:
*Ca i K do wody - powstają wodorotlenki
*Do wodorotlenków osobno Fe czyli żelazo,w stężonym roztworze powstaje niebieski żelazian sodu, bar tworzący wodorotlenek, bizmut tworzący wodorotlenek, beryl też, nikiel w tych warunkach nie reaguje.

To nie zbyt zachęcające. Dlatego lepszy wydaje się drugi sposób odczytu, w którym CONi to karbonylek niklu. Procedura wyglądałaby tak:
* do wody potas i wapń, powstają wodorotlenki, część potasu zostawiamy
* Karbonylek niklu do wodorotlenków.  Jedna cząsteczka tlenku odszczepia się, powstaje bardzo trwały anion (tu dla karbonylku żelaza i zasady sodowej):
Carbonyl ligand exchange2.png
 * Beryl do wodorotlenku. Powstaje rozpuszczalny wodorotlenek:
Be + 2OH + 2H2O → [Be(OH)4]2− + H2
Który rozcieńczamy otrzymując kation akwakompleksu  [Be(H2O)4]2+ .
* Dodajemy roztwór karbonylożelazianu do roztworu berylu. Powstaje (hipotetycznie) karbonylożelazian akwaberylu, zapewne o charakterze jonowego związku kompleksowego. Kto wie, czy nie zielonego. Pozostałe metale mogą występować w formie węglanów i wodorotlenków, regulujących pH. 


 Flubber

W nowszej (1997) wersji Amerykańskiej komedii "flubber" przez moment obserwujemy na ekranie komputera cząsteczkę badanego przezeń związku, poddawaną symulacji trwałości wiązań. Jaki jest to związek? Na pewno bardzo energetyczny.
Kolor niebieski oznacza zapewne azot, czarny węgiel a czerwony tlen. Tworzą one klatkowatą strukturę będącą odpowiednikiem bryły pólforemnej sześcio-ośmiościanu rombowego wielkiego o 26 ścianach będących kwadratami, sześciokątami i ośmiokątami. Dzięki temu można przedstawić wzór sumaryczny N36C10O2. Czy taka cząsteczka byłaby możliwa? Cóż, warunek trzech wiązań na jeden azot w narożu jest spełniony, wodory przy węglu mogły zostać pominięte, chybą że jest to węgiel w stanie sp2. Nie do końca pasuje mi trójwiązalny tlen, ale może to być związek oniowy ze strukturą jonową stabilizowaną mezomerycznie. Tak więc teoretycznie możliwe jest połączenie wszystkich tych atomów w taką strukturę. Inna sprawa na ile byłaby ona trwała - tak duża ilość połączonych ze sobą azotów bardzo chętnie przemieniłaby się w bardziej trwałe cząsteczki azotu. Przebiegałoby to z wydzieleniem emergii - prawdopodobnie na sposób wybuchowy. Formuła fizyczna określająca, że ilość energii wydzielonej zależy od dostarczonego ciepła, ma więc pewne uzasadnienie.

Pierwotna wersja z 1961 roku ("The Absend-minded Professor" czyli "Roztargniony profesor) nie podaje zbyt wielu wskazówek na temat składu, jednak na jednej z pierwszych scen dostrzegamy zapisaną wzorami tablicę:

 Pomiędzy mieszanką wzorów fizycznych dostrzec możemy fragmenty łańcucha octanu poliwinylu. Począwszy od góry mamy nawet poprawnie rozpisaną syntezę - pośrodku acetylen, od którego odchodzi strzałka w lewo z zapisaną reakcją addycji chlorowodoru wobec katalizatora rtęciowego. Strzałka w prawo dotyczy reakcji acetylenu z kwasem octowym dającej octan winylu zapisany nad słowami w kółku. Ten polimeryzuje dając poli-octan winylu. Na tablicy widać jednak raczej kopolimer z chlorkiem winylu, na co wskazuje chlor pojawiający się przy łańcuchu.

Czy zatem profesor odkrył klej winylowy? Sądząc po nietypowych właściwościach, musiało być w tym coś więcej. Inspiracja filmem powoduje jednak, że "Flubber" stało się określeniem pewnych galaretowatych mas plastycznych, sprzedawanycj jako zabawki. Można je otrzymać mieszając klej winylowy z boraksem i barwnikami, można też zamiast kleju użyć gumy arabskiej albo sorbitolu - kwas borowy połączy łańcuchy dając żel o specyficznej konsystencji.

Formuła 51
W brytyjskim filmie sensacyjnym Formuła, znanym też jako Formuła 51, fabuła opiera się o wynalazek narkotyku, mającego być 51 razy mocniejszym od najsilniejszych znanych. O wzór i przepis zaczynają walczyć różne grupy przestępcze, wprowadzając dużo zamieszania.
Dla mnie istotniejsze jest jednak, że w kadrze na moment dostrzegamy wzór tak upragnionej substancji:
Jest to propozycja bardzo ciekawa, zwłaszcza łączący dwie części pierścień dwóch atomów wodoru, połączonych wiązaniem trójcentrowym z grupą nitrową. Gdyby to było możliwe, cząsteczka przedstawiałaby się dosyć interesująco, ale na razie możliwe się nie wydaje. Kwestię czy ma to znaczenie dla fabuły, pozostawiam widzom.

Jeśli macie jeszcze jakieś ciekawe przykłady, to piszcie.
------
* Reakcje Chemiczne w Filmach

wtorek, 18 lutego 2014

Rodział jonów niklu i kobaltu - chromatografia jonowymienna

Przegrzebując fotograficzne archiwa dotarłem do pierwszego roku studiów, na którym mieliśmy zajęcia z chemii nieorganicznej, i tam znalazłem kilka zdjęć dokumentujących pewne stare ćwiczenie, które chyba warto tu omówić.

Kobalt i Nikiel są pierwiastkami należącymi do raczej dziś już historycznej triady żelazowców. Wszystkie trzy wraz z żelazem charakteryzują się bardzo podobnymi właściwościami chemicznymi, podobieństwo w okresie jest większe niż w grupie. To metale, ferromagnetyki, chętnie występujące na +2 i +3 stopniu utlenienia. Właściwości ich soli są na tyle podobne, że rozdział metodami fizycznymi i chemicznymi jest trudny - o ile można to jeszcze przeprowadzić dla żelaza, to już kobalt i nikiel reagują tak samo.

Na samym początku przygotowaliśmy roztwory chlorku kobaltu II i chlorku niklu II, o różnych kolorach:
i zmieszaliśmy je ze sobą. Otrzymana mieszanka miała kolor brunatny. I co też tu teraz zrobić? A no napełnić kolumnę kationitem.

Substancje jonowymienne to bądź minerały i materiały ceramiczne bądź tworzywa sztuczne zawierające przyłączone do powierzchni grupy kwasowe lub zasadowe. W pewnym stopniu można je uznać za nierozpuszczalne kwasy i zasady. Przykładem może być choćby żel krzemionkowy, zawierający na powierzchni reszty kwasu krzemowego, albo polimer styrenowy z resztami kwasu siarkowego. Te "stałe kwasy" w odróżnieniu od takich nierozpuszczalnych substancji jak wolne kwasy tłuszczone, mają jednak specyficzną właściwość - chętnie dysocjują, zwłaszcza gdy mogą wymienić jony wodoru na jakieś inne kationy. Taki kationit zachowuje się w roztworach soli jak kwas siarkowy w proszku - zakwasza roztwór i tworzy sole, przy czym są to oczywiście sole przytwierdzone o podłoża polimerowego. Kation przyłącza się do podłoża i uwalnia jon wodorowy, który sam uwalnia się trudno.
Jest to cenna właściwość i korzysta się z niej wówczas, gdy potrzebne jest zakwaszenie ale nie potrzebne wprowadzanie nowych jonów pochodzących od reszt rozpuszczalnego kwasu. Bywa używany w modyfikacji klasycznej reakcji estryfikacji kwasu z alkoholem. Najczęstsze zastosowanie, z jakim co niektórzy mogą się spotkać w życiu codziennym, to zmiękczanie wody - po dodaniu kationitu z przyłączonym sodem, jony wapniowe i magnezowe przyłączają się do niego.

Szczególnym przypadkiem jest otrzymywanie wody dejonizowanej - wówczas woda przepuszczana jest przez bęben z wypełnieniem kationitu, który wyłapuje kationy, a potem przez bęben wypełniony anionitem, który pochłania aniony. Uwolnione kationy wodorowe i aniony hydroksylowe zobojętniają się i powstaje nam czysta, pozbawiona soli woda, jest to szybsze i bardziej energooszczędne od wielokrotnej destylacji.

Zużyty jonit można zregenerować - ten kwasowy przemywając roztworem mocnego kwasu, ten sodowy przemywając stężonym roztworem soli (tak właśnie zmywarki do naczyń regenerują kationit zmiękczający i do tego potrzebna jest sól do zmywarek).

Jak jednak ma się to do rozdziału jonów?
Do podłoża przyłączać mogą się różne jony, przy czym siła tego wiązania zależy od właściwości jonu. Powinowactwo kationu metalu do grupy sulfonowej w dużym stopniu zależy od ładunku, toteż kationy dwudodatnie jak Ca2+ będą przyłączane chętniej niż jednododatnie jak Na+ . W przypadku jonów o tym samym ładunku znaczenie ma też siła tego ładunku zależna od liczby atomowej i wielkości jonu, co wpływa na zagęszczenie ładunku. Jon silniej wiążący się z podłożem, będzie  wypierał jon słabiej związany. Wypieranie następuje też gdy jon słabszy występuje w dużym stężeniu.

Jak to wszystko ma się do rozdziału pierwiastków?
Nasze pierwiastki, kobalt i nikiel, leżą obok siebie w układzie okresowym, ich atomy mają podobną wielkość, jednak między kationami występuje niewielka różnica - kation niklu jest większy. Wobec tego ładunek na zewnątrz kationu jest mniej zagęszczony a sam kation jest słabiej wiązany do kationitu. Różnica jest niewielka, ale wystarczająca. Gdy nałożymy mieszankę obu pierwiastków na kolumnę kwaśnego żelu i będziemy przemywali ją kwaśnym roztworem, wymywającym kationy przez wypieranie, słabiej związany nikiel będzie po pierwsze bardziej wymywany przez eluent a po drugie nieco bardziej wypierany przez silniej wiążący kobalt. Ta niewielka różnica doprowadzi do tego, że kation niklu oddzieli się od kobaltu i będzie szybciej przepływał przez wypełnienie. Dzięki temu dokona się rozdział.

Tak więc na początek napełniłem szklaną kolumnę sypkim wypełnieniem, i przepłukałem wodą destylowaną, następnie przepłukałem kolumnę zasadowym buforem cytrynianowym mającym za zadanie zdeprotonować powierzchnię i usunąć wszystkie kationy. Przemywałem kolumnę tak długo aż odczyn wycieku stał się obojętny. Teraz przepłukałem ją ponownie ale roztworem kwasu, był to chyba rozcieńczony kwas solny, aby sprotonowac wszystkie grupy. Całość należało teraz przemywać wodą tak długo, aż wyciek będzie obojętny. Żel podczas tych manipulacji to puchł to kurczył się. Taka kolumna była już gotowa do użytku:

Na szczyt kolumny nalałem mieszankę soli, które zostały silnie zaabsorbowane, tworząc brunatną warstewkę:

Pochłonięte kationy dosyć dobrze związały się z podłożem, dlatego kolumnę przemyłem jeszcze wodą, aby odmyć aniony, po czym zacząłem przepłukiwać ją kwaśnym roztworem. Kationy ruszyły w dół i zaczeły rozdzielać się na szybsze zielone i wolniejsze różowe pasmo.
 
Teraz należało obserwować kolor wycieku i podstawić w odpowiedniej chwili odbieralniki, najpierw na frakcję zieloną:

a potem na różową:

I tak dwa bardzo podobne pierwiastki zostały oddzielone.

W praktyce używa się tej techniki do rozdziału lantanowców - bardzo cennych pierwiastków mających zastosowanie w technice i elektronice (na przykład neodym), o praktycznie identycznych właściwościach fizycznych, występujących na raz w tym samym minerale. Można też w ten sposób rozdzielać związki organiczne, na przykład aminy w formie kationów amoniowych.

niedziela, 19 stycznia 2014

Środki osuszające

Zimą, zamknięci w uszczelnionych przed chłodem mieszkaniach, susząc pranie na rozgrzanych kaloryferach doświadczamy niekiedy warunków iście tropikalnych, gdy nasycona wilgocią atmosfera nie pozwala schładzać się ciału. Wtedy też widzimy wilgoć spływającą z chłodnych okien i marszczące się papierowe gazety. I być może przypominamy sobie wówczas reklamy osuszaczy powietrza, które w jakiś magiczny sposób mają wyssać z powietrza wilgoć.
W jaki sposób? W sposób fizyko-chemiczny...

Skłonność substancji do wchłaniania wody obecnej w powietrzu nazywamy higroskopijnością. Aby proces taki mógł zachodzić, między wodą a materiałem wchłaniającym powinny zachodzić odpowiednio silne oddziaływania. Bardzo hydrofobowy polietylen w zasadzie nie wchłania wilgoci, zaś hydrofilowa celuloza czyni to chętnie. Sam proces chłonięcia wody odbywa się na dwa sposoby - przez osadzanie wody na powierzchni, czyli adsorpcję, albo poprzez wchłanianie do wewnątrz struktury materiału.

Głównym oddziaływaniem mającym wpływ na zdolność osuszająca materiału, są wiązania wodorowe, rozpięte między atomem posiadającego wolne pary elektronowe niemetalu w jednej cząsteczce a wodorem w drugiej. Są to dosyć luźne połączenia, raczej przyciąganie elektrostatyczne niż prawdziwe wiązania, jednak występują często i licznie, wpływając na kształt dużych cząsteczek i właściwości fizyczne substancji. Przykładem może być woda w której każda cząsteczka może tworzyć takie wiązania z trzema innymi. Co prawda ruchy termiczne już w temperaturze pokojowej na tyle silnie miotają cząstkami, że wiązania co chwila rozrywają się i tworzą na nowo, ale sumą ich efemerycznego istnienia jest istotne zwiększenie temperatury wrzenia i krzepnięcia - bez nich tlenek wodoru byłby gazem o temperaturze skraplania poniżej -50 stopni.

Jeśli stały materiał zawiera na swej powierzchni grupy z silnie elektroujemnym niemetalem o wolnych parach elektronowych, to cząsteczka wody z powietrza może zostać z nim związana. Takimi materiałami będzie na przykład celuloza lub cukier, mające w strukturze wiele grup hydroksylowych. Między tlenem takiej grupy a wodorem cząsteczki wody powstaje wiązanie. Możliwe jest też wiązanie między wodorem grupy hydroksylowej a tlenem cząsteczki wody. W podobny sposób wodę chłoną białka, gdzie mamy pod dostatkiem atomów elektroujemnych (azot, tlen).
W przypadku naturalnych włókien, ilość pochłoniętej wilgoci wpływa na ich długość - włókno nawodnione rozciąga się a wysuszone kurczy. Praktycznie wykorzystano tą własność w "domkach pogodowych" gdzie włos lub nić bawełniana owinięty wokół osi, rozciągając się lub skracając przy różnej wilgotności powietrza powoduje, że raz z domku wysuwa się figurka kobiety a raz mężczyzny z parasolem.

Nieco inny jest mechanizm wchłaniania wody przez sole nieorganiczne i materiały ceramiczne. Sól taka składa się z anionów reszty kwasowej i kationów metalu. Każdy jon wytwarza wokół siebie niewielkie pole elektryczne, do którego przyciągane są cząsteczki wody o właściwościach dipola. Zależnie od wielkości i tego na ile jest osłonięty przez inne atomy, jon przyciągnie w ten sposób od jednej do sześciu cząsteczek wody. W taki sposób zwykle rozpoczyna się rozpuszczanie soli w wodzie, tu jednak powstaje jedynie jednocząsteczkowa warstwa na samej powierzchni
Ten powierzchniowy sposób nie ma zwykle wpływu na strukturę materiału, chyba że cząsteczki wody utworzą z jonami dużo trwalszą strukturę - hydrat.
W hydracie cząsteczki wody stają się części sieci krystalicznej. Kationy metali chętnie bowiem tworzą z wodą akwakompleksy, a więc związki z przeniesieniem elektronów tlenu na puste powłoki metalu. Powstający wówczas jon kompleksowy może być bardzo trwały. Aniony z kolei mogą wiązać wodę bądź elektrostatycznie, bądź przez wiązania wodorowe jeśli są resztami kwasów tlenowych.
Hydratacja soli często zmienia jej właściwości - bezwodny siarczan miedzi jest sypkim, białym proszkiem; po nawodnieniu staje się intensywnie niebieski za sprawą powstającego jonu kompleksowego Cu[(H2O)4]2+ , piątą cząsteczkę wody wiąże reszta siarczanowa poprzez wiązanie wodorowe, stąd pełny wzór hydratu CuSO4 X 5 H2O.



Wyjątkowo dużo wody może związać krystalicznie siarczan sodu, nazywany solą glauberską. Uwodnione kryształy zwierają 10 cząsteczek wody na jeden ekwiwalent związku, co stanowi więcej niż 50% masy. Sześć cząsteczek wiąże w mało trwałym kompleksie kation sodowy, dwie wiąże reszta siarczanowa zaś dwie kolejne zawierają się w pustych przestrzeniach sieci. Podobny związek w formie przezroczystych kryształów daje węglan sodu. Bezwodny chlorek kobaltu jest intensywnie niebieski (zabarwia się nim emalię), uwodniony staje się różowy.
Małe i silnie naładowane jony na powierzchni kryształu nie tylko przyciągają kilka cząsteczek wody, ale też często ich oddziaływanie jest nadal wystarczające aby do tej warstewki dołączać kolejne, przez co materiał pokrywa się warstwą wody w której może zachodzić rozpuszczanie. Takim jonem jest jon wodorotlenkowy, w efekcie rozpuszczalne wodorotlenki jak sodu czy potasu, pozostawione na powietrzu rozpływają się w gęsty roztwór.

Wreszcie w przypadku materiałów porowatych pewną rolę pełni też kondensacja kapilarna

Osuszacze
Jak wobec powyższego działają komercyjne osuszacze powietrza?
Część urządzeń opiera się na wykraplaniu wilgoci na elemencie chłodzącym, są to urządzenia potrzebujące prądu, ja jednak zajmę się tymi bezprądowymi, opartymi na higroskopii. 
Typ jaki najczęściej spotykam to prosty pojemnik z podziurkowanym wieczkiem, do którego wsypuje się granulki, te po pewnym czasie rozpływają się zaś ilość roztworu zwiększa się do pewnego poziomu. Takie osuszacze bazują na pochłanianiu wody przez sole nieorganiczne, najczęściej przez suchy chlorek wapnia.
Związek ten chłonie wodę zamieniając się w hydrat, wiążąc w formie krystalicznej do sześciu cząsteczek wody na jeden równoważnik związku. Hydrat ten jest jednak nadal higroskopijny, chłonąc wodę na powierzchni ziaren tak silnie, że zaczyna rozpływać się "we własnym sosie" tworząc roztwór.

Gdy grudki się rozpłyną, w pojemniku tworzy się syropowata ciecz, zaś w pochłanianiu wilgoci przeważać zaczyna inne  niż wyżej opisane zjawisko fizyczne - mianowicie równowaga między parą nasyconą a roztworem. Gdy umieścimy w pojemniku lotną ciecz, zacznie ona parować aż do momentu gdy gazowa część zbiornika osiągnie stan nasycenia.  W takim stanie para pozostaje w równowadze z cieczą, co oznacza, że tyle samo cieczy paruje co pozostaje wchłonięte przez roztwór. Jeśli nasz pojemnik nie będzie szczelny, para będzie uciekała i nie osiągnie nasycenia, zaś lotna ciecz powolutku wyschnie.
Zamknięte mieszkanie może być potraktowane jak taki pojemnik, w którym znajdują się źródła pary wodnej. Jej stężenie w powietrzu zmienia się, czasem wzrastając tak bardzo że skrapla się na chłodnych przedmiotach, zazwyczaj jednak jedynie powodując wilgotnienie materiałów za sprawą ich higroskopijności.
W zasadzie dopóki w mieszkaniu nie zapanują tropikalne warunki pełnego nasycenia parą wodną, równowaga między cieczą a parą nie jest zachowana i woda pozostawiona w szklance powoli paruje.
Inaczej będzie gdy w takim wilgotnym mieszkaniu postawimy roztwór zawierający dużo soli.
Sól niejako "rozcieńcza" wodę.
Gdy rozpatrzymy to sobie mikroskopowo, parowanie następuje gdy w granicę faz uderzy cząsteczka o wystarczającej energii. Jeśli teraz rozprowadzimy w wodzie sól, jej cząsteczki zajmą miejsce niektórych cząsteczek wody. Zatem, znów mikroskopowo patrząc, w granicą faz od dołu uderza mniejsza ilość cząsteczek, przez co roztwór jest mniej lotny (ma niższą prężność par).
Skoro tak, to do osiągnięcia stanu równowagi wystarczy zdecydowanie mniejsze nasycenie par nad roztworem. Jeśli do zamkniętego naczynia wstawimy szklankę z wodą i szklankę z roztworem soli, woda będzie parować aż osiągnie stan równowagi z czystą wodą - co będzie jednak stanem nadmiernie wilgotnym dla roztworu soli. Roztwór soli zacznie więc pochłaniać wodę a my obserwujemy, że w jednej szklance poziom opada a w drugiej rośnie.

Gdy w naszym wilgotnym mieszkaniu granulki chlorku wapnia w pochłaniaczu rozpłyną się, powstający roztwór nadal będzie pochłaniał wilgoć, coraz słabiej wraz z rozcieńczaniem. Tak powstały roztwór jest nieszkodliwy, choć może działać drażniąco. Można go odparować do sucha odzyskując środek wiążacy, po schłodzeniu gęstego roztworu wydzielają się kryształy hydratu. Roztworu bądź kryształów można użyć do odladzania przy silnych mrozach.

Inne osuszacze, mające postać saszetek i woreczków, zawierają różnego typu chłonne materiały ceramiczne i naturalne glinki, na przykład bentonit. Wchłaniają mniej wilgoci ale nie rozpływają się, dlatego można używać ich na przyklad w samochodzie.

Bardzo pospolitych środkiem chłonnym jest koloidalna krzemionka. W postaci mlecznych granulek w woreczkach jest wrzucana do butów lub umieszczana w opakowaniach leków - na przykład wewnątrz koreczków tubek z wapnem musującym.

Jest to wytrącony z roztworów krzemianów kwas krzemowy, silnie skondensowany, tak że w większości składa się w usieciowanego tlenku krzemu, na powierzchni mając wolne grupy hydroksylowe, które podobnie jak te w celulozie i w cukrze, łączą się chętnie z cząsteczkami wody. Jest to materiał wyjątkowo porowaty ze szczelinami wewnątrz ziarna, przez co faktyczna powierzchnia ziarna krzemionki jest ogromna.
Czasem dostępny jest typ zmieniający barwę zależnie od nasycenia, zwykle za sprawą dodatku chlorku kobaltu - suchy żel jest wtedy błękitny a gdy jest nasycony i przestaje pochłaniać wilgoć, staje się różowy

Z pochłaniaczy wilgoci korzystają także chemicy - niejednokrotnie ślady wilgoci przeszkadzają w reakcjach, a także utrudniają dokładne odważenie związku. Dlatego sypkie związki przechowuje się zwykle w szklanych naczyniach z grubego szkła - eksykatorach - zawierających w dolnej części sypkie osuszacze różnej mocy. Czasem jest to żel krzemionkowy, zwykle jednak używa się chlorku wapnia lub siarczan magnezu, często też nadchloran magnezu (ale ten ostrożnie bo zanieczyszczony związkami organicznymi może się zapalić) a także tlenku fosforu. Ten ostatni jest silnym pochłaniaczem wilgoci, wiąże ją przez reakcję chemiczną, tworząc kwas fosforowy.
W podobny sposób wiąże wodę tlenek wapnia, tworzący z nią stały wodorotlenek; zwykle suszy się nim niższe alkohole. Osuszacze te mogą być dodawane do płynnych cieczy organicznych aby usunąć z nich ślady wody, jeśli z nimi nie reagują. Skrajnym osuszaczem używanym do rozpuszczalników organicznych, jest metaliczny sód, reagujący z wodą z wydzieleniem wodoru - procedurę opisałem kiedyś w innym wpisie.
Szczególnym przypadkiem są sita molekularne - granulki masy ceramicznej zawierające niewielkie pory, w głąb których wcisnąć mogą się cząsteczki wody ale nie cząsteczki większych substancji. Dlatego dosyć selektywnie odciągają wodę z substancji, pozwalając osiągnąć bardzo dobre rezultaty.

wtorek, 31 grudnia 2013

Kolory ognia - czyli chemia fajerwerków

Być może obserwując fajerwerki strzelające podczas poprzednich Sylwestrów bądź nawet teraz już wypróbowywane przez co niektórych niecierpliwców, mogliście się zastanowić jak to się właściwie dzieje, że iskry płomieni mogą być zafarbowane na jakiś określony kolor. A no, proszę państwa, to już sama chemia działa.


Fajerwerki jako pierwsi wymyślili Chińczycy, niedługo po odkryciu prochu, bo już w VII wieku naszej ery, początkowo w formie zabawki - najpopularniejszym typem były rurki z których wysypywały się kaskady iskier. Szybko wynaleziono też rakiety które znalazły zastosowanie w wojnie - długie, drewniane rakiety z rzeźbioną głową smoka płoszyły konie i ludzi. Podczas bitwy z Mongołami zastosowano też lotne strzały z przymocowanymi małymi rakietkami zwiększającymi zasięg strzału.
Do europy proch trafił w Średniowieczu lecz fajerwerki nie osiągnęły tak dużej popularności jak w swej ojczyźnie i aż do XIX wieku nie były powszechnie dostępne. Przez długi czas nie umiano również wpływać na kolor spalania, mogły być żółte lub białe, mniej lub bardziej jasne. Zmieniło się to wraz z odkryciami chemików, iż pierwiastki potrafią zabarwiać ogień.
Jak z pewnością pamiętacie ze szkoły, atomy składają się z jądra i elektronów w przestrzeni wokół nich. Wprawdzie mechanika kwantowa nieco komplikuje utrwalony obraz małych kulek na orbicie większych kulek, ale takie przybliżenie jest w sam raz dobre aby wytłumaczyć zachodzące zjawiska.
Elektrony wokół jąder grupują się w powłoki zawierające ich określoną liczbę, każda oddzielona jedna od drugiej niewielkim odstępem, coraz dalej aż do ostatniej powłoki walencyjnej. W atomie obojętnym rozkład elektronów w powłokach jest taki, że posiadają najniższą możliwą energię. Jest to stan podstawowy. Nieco inaczej jest jeśli nadamy mu energię, na przykład podgrzewając w płomieniu. Energia przerzuci część elektronów na wyższą powłokę, co jest jednak dla atomów stanem nietrwałym. Bardzo szybko elektrony powracają na swoj miejsce, wypromieniowując energię, ale nie jako ciepło lecz jako światło określonej częstotliwości.

Każdy pierwiastek po wzbudzeniu emituje światło innej długości fali w serii linii widmowych. Najintensywniejsza linia widmowa powoduje że cały płomień w którym rozprowadzone są pary tego pierwiastka, świeci określonym kolorem. W podobny sposób na wzbudzenie reagują jony a także całe molekuły
Zatem aby zabarwić fajerwerki, musimy dodać do nich stosunkowo lotną sól metalu, barwiącego płomień na określony kolor.

Masa palna zawiera zatem przede wszystkim utleniacz, a więc różne saletry, chlorany itp, paliwo czyli węgiel, cukier czy inne związki organiczne, czasem siarkę, dodatki kontrolujące prędkość spalania (i zapobiegające przedwczesnej eksplozji) sól metalu barwiącego i zazwyczaj źródło chloru. Chlorki metali są zwykle dosyć lotne, i dają intensywniejsze kolory, częściowo dzięki emisji cząsteczki chlorku, dlatego taki dodatek pomaga w utrzymaniu barwy, zwykle jest to kauczuk chloroprenowy czy PVC, ewentualnie salmiak.


Czerwony
Istnieją dwa pierwiastki nadające się do barwienia płomieni na czerwono, dające różne odcienie. Sole Strontu, lekkiego metalu alkalicznego,  dają kolor intensywny, ciemny. Zwykle stosowany jest w formie chlorku lub węglanu; jako azotan strontu pojawia się w znanych wszystkim ze stadionów czerwonych racach.
Kolor jasnoczerwony nadają ogniowi sole litu, są jednak raczej rzadziej używane, zwykle w mieszankach dla uzyskania intensywnego pomarańczu. Zazwyczaj w formie węglanu lub chlorku.

Żółty
Kolor żółty jest bardzo łatwy do uzyskania, tak bardzo że trzeba uważać aby kompletnie nie zamaskował sobą właściwych kolorów. Czynnikiem jest tutaj sód, wszechobecny w ludzkim otoczeniu jako składnik potu. Zazwyczaj używany jest azotan sodu, który jest mało higroskopijny, przez co fajerwerk nie tak łatwo wilgotnieje; można też użyć zwykłej soli kuchennej lub sody oczyszczonej. Czasem używany jest kriolit, czyli fluoroglinian sodu, mający tą zaletę że jest nierozpuszczalny i zupełnie niehigroskopijny. Intensywne światło sodu zagłusza inne kolory, dlatego pirotechnicy starają się nie zanieczyścić nim swych mas palnych

Pomarańczowy
Pomarańczu przyda iskrom pospolity wapń zwykle w formie siarczanu (gips) lub chlorku, bardziej intensywny kolor otrzymuje się dodając domieszki pierwiastków barwiących żółto i czerwono.

Zielony
Kolor ten pojawia się w oparach kilku pierwiastków, lecz zastosowanie znalazł ostatecznie Bar, w formie węglanu i chlorku. Specyficznym przypadkiem jest azotan baru - z dodatkami chlorującymi daje mało intensywną zieleń, bez nich zachowuje się jak zwykła saletra i bardzo często jest używany po prostu jako utleniacz, na przykład w zimnych ogniach

Niebieski
Na niebiesko rakietę zabarwią sole miedzi, ale aby uzyskać taki efekt temperatura plomienia musi być odpowiednio wysoka, w przeciwnym razie metal da mało wyraźną, jasną zieleń. Najlepszy jest tutaj chlorek miedzi I, mogą być też użyte węglany a nawet tlenki z dodatkami chlorującymi. Intensywny odcień daje też zieleń paryska, czyli arsenian-octan miedzi, toksyczny związek.

Indygo
Szczególnie ciemny odcień niebieskiego, określany jako Indygo, dają sole cezu, silnie alkalicznego, rzadkiego metalu. Używany jest tutaj właściwie tylko azotan cezu. Fajerwerki takie muszą ciekawie wyglądać w podczerwieni, metal bowiem emituje bardzo intensywną linię widmową właśnie w tym zakresie, czego niestety gołe oko nie zobaczy.

Fiolet
Odcienie fioletu i różu nada fajerwerkom potas, ale w nieobecności sodu. Dość intensywny kolor można uzyskać stosując azotan rubidu, jest to jednak rzadkie zastosowanie. Najczęściej jednak używa się mieszanki czerwonych związków strontu i niebieskich związków miedzi.

Ferdinand du Puigaudeau, Fajerwerki w porcie
Pierwiastki te niekoniecznie nadają się do zabarwiania innych typów płomieni - płomień węglowodorowy świeci głównie dzięki rozżarzonym cząstkom węgla, których blask może zagłuszać efekt emisyjny. Sprawdzałem że w przypadku świecy sól miedzi powoduje, że zielonkawe zabarwienie widoczne jest właściwie tylko w zewnętrznym płaszczu płomienia i końcówce, podobne efekty można zaobserwować w ognisku, po wrzuceniu kolorowych, zadrukowanych pism, gdzie związki miedzi i baru (użytego jako baryt w charakterze wypełniacza masy papierowej) podbarwiają zielonkawo same szczyty ogników.
Efekt możne być jednak wyraźny w przypadku płomieni alkoholi i niektórych paliw, dających ogień raczej niebieski z żółtą końcówką niż cały żółty. Dobrym sposobem zabarwienia płomienia alkoholu jest dodanie do niego kwasu bornego i lekkie ogrzanie, można też dodać do tej mieszanki nieco kwasu siarkowego. W takich warunkach tworzą się estry borowe, dosyć lotne i chętnie tworzące ciemnozielony płomień. W przypadku innych metali podejrzewam, że efekt mogłoby dać nasycenie chlorkiem metalu samego knota, jako że sole są mało rozpuszczalne w alkoholu. Możliwe jest więc zrobienie lampek spirytusowych w różnych kolorach.
Zastanawiam się czy możliwe by było zmieszanie oddestylowanego estru borowego z samym woskiem i zrobienie świecy, ale podejrzewam że efekt byłby jednak słaby

Użyte pierwiastki po spaleniu się zostają uwolnione do atmosfery w formie lotnych popiołów. Niestety często używany w fajerwerkach bar jest pierwiastkiem trującym, zwłaszcza dla ryb. Iluminacje sylwestrowe są jednym z największych źródeł baru w powietrzu, na szczęście jednorazowym. Używając zimnych ogni zwróćcie uwagę na etykiety gdzie radzi się po użyciu umyć ręce - to właśnie z powodu azotanu baru stosowanego jako utleniacz.
Związkiem trującym dla ryb jest też często używany nadchloran, który u ludzi jest związkiem wolotwórczym. Z tego też powodu poszukuje się bardziej ekologicznych formuł. Dosyć ciekawym pomysłem jest zastosowanie kompleksów tetrazoli z metalami, które zawierając śladowe ilości metali intensywnie świecą przy silnym ogrzaniu, zanim całkiem się spalą. Natomiast nadchlorany można zastępować nie trującymi nadjodanami, dającymi dodatkowo żółty kolor spalania.

niedziela, 10 listopada 2013

Skaczące kryształy

Gdy usłyszałem o skaczących kryształach, byłem bardzo zaskoczony ale i zaciekawiony. Kryształy pewnych substancji w odpowiednich warunkach deformują się na tyle gwałtownie, że są w stanie poskoczyć, niejednokrotnie na stosunkowo dużą odległość.

Stan krystaliczny charakteryzuje się regularnym, sieciowym ułożeniem cząstek i niejednorodnością właściwości fizycznych - na przykład wzdłuż pewnego wymiaru kryształ przewodzi prąd lepiej niż w innym, albo ogrzany wydłuża się w pewnym kierunku a w innym kurczy. Zależnie od stopnia powiązania budujących go cząstek, możemy mieć do czynienia z kryształem jonowym, złożonym z jonów soli połączonych w trwałą siatkę; z kryształem kowalencyjnym gdzie podobne do siebie atomy łączą się wiązaniami, bądź z kryształem molekularnym gdzie osobne cząsteczki związku nie są ze sobą trwale połączone, a jedynie upakowały się w przestrzeni na tyle ciasno, że tworzą ciało stałe.
Kwestia oddziaływań mechanicznych na właściwości kryształów była już dosyć dokładnie zbadana. Wiadomo że niektóre są na tyle plastyczne, że potrafią deformować się pod wpływem stale działających sił - przykładem sól kamienna która pod wpływem dużego ciśnienia nabiera skłonności do płynięcia. Inne kryształy reagują w jeszcze ciekawszy sposób - piezoelektryki pod wpływem ściskania elektryzują się z jednym ładunkiem na jednym końcu i drugim na przeciwnym. Różnice wytworzonych w ten sposób napięć potrafią być bardzo duże; kostka kryształu górskiego ściśnięta siłą 500 kN wytwarza różnicę napięć 12 tysięcy V, czego praktycznym wykorzystaniem z jakim każdy się spotkał, są zapalniczki piezoelektryczne - nacisk na przycisk deformuje grupę kryształów a różnica napięć generuje iskrę.
Piezoelektryki to substancje których komórki krystaliczne (najmniejsze stałe elementy sieci) nie mają środka symetrii a składają się z cząstek o różnym ładunku. Powoduje to że środki układu ładunków dodatnich i ujemnych nie pokrywają się ze sobą tworząc niewielki dipol. Ściskanie kryształu deformuje go, ściska komórki krystaliczne i przez zmianę ich kształtu rozsuwa środki układu ładunków - każda komórka staje się więc dipolem elektrycznym o wielkości zależnej od siły ucisku.

Sumą dipolów poszczególnych komórek jest naelektryzowanie się dwóch końców całego kryształu. Obserwuje się też efekt odwrotny - rozciąganie się kryształu pod wpływem przyłożonego ładunku. Wykorzystuje się to w zegarkach kwarcowych - piezoelektryczny kwarc pod wpływem napięcia z baterii nieco rozszerza się a potem kurczy, wydzielając mały impuls elektryczny; częstość pierwotna drgań daje 32768 impulsów na sekundę. Elektroniczne podzielniki zmniejszają ilość impulsów o połowę i po piętnastu takich podziałach pozostaje nam stały sygnał jeden impuls na sekundę


Wszystkie te efekty mechaniczne następują stopniowo, zmieniając się płynnie zależnie od przyłożonych sił. Dlatego zaskoczeniem było odkrycie silnych deformacji mechanicznych, które następują dosłownie skokowo.
Pierwszymi zaobserwowanymi skaczącymi kryształami były kryształy bromku oksytropium - leku rozkurczowego, od dawna stosowanego w medycynie. W zasadzie ciekawe że przez długi czas ta właściwość umykała badaczom, choć zapewne mogli ją obserwować podczas często stosowanego do identyfikacji testu pomiaru temperatury topnienia, efekt następuje bowiem podczas ogrzewania - niewielkie kryształki związku nagle podskakują na odległość do kilku centymetrów. Zjawisko zarejestrowano na filmie:
Kryształy przeskakują w całości lub po pęknięciu. Jaki jest mechanizm zjawiska?
Bromek oksytropium składa się z dwóch części: tricyklicznego kationu epoksyazanonyliowego połączonego przez elastyczne wiązanie estrowe z  częścią aromatyczną, zaś aniony bromkowe zobojętniają cząsteczkę; podejrzewam że dodatkową stabilizację układu zapewnia nie zaznaczone wiązanie wodorowe.

Tylko wiązanie estrowe nie jest sztywne i możliwy jest obrót jednej części cząsteczki względem drugiej, co jednak nie następuje w niskich temperaturach. W miarę wzrostu temperatury wzrasta energia drgań cząsteczki aż możliwe staje się przełamanie bariery rotacji i uzyskanie odmiennego kształtu. Powoduje to nagromadzenie się naprężeń uwalnianych jako jedno silne drgnięcie w chwili odblokowania rotacji większości cząsteczek. Kryształ wykonuje skok.[1] Zjawisko nazwano thremosalient effect co można by jak sądzę przetłumaczyć jako "efekt termosprężnujący" ("termoskokowy" źle by brzmiał, choć takie byłoby tłumaczenie dosłowne, od łacińskiego źródłosłowu saliens - skakanie, podskakiwanie).

Po tym odkryciu znaleziono inne, działające na innej zasadzie, ciekawa jest na przykład praca w której odkryto, że kryształy pewnych skomplikowanych kompleksów kompleksów metali przejściowych z perfluorowanym acetyloacetonem i ligandem będącym N-tlenkiem nitronylu, po utworzeniu wykazują skokowe ruchy polegające na podskokach i fragmentacji, trwające samoczynnie przez kilka tygodni. Źródłem okazała się reakcja eliminacji tlenu, powodująca zmiany upakowania cząstek kompleksu a co za tym idzie także deformacje kształtu kryształu.[2] Stosunkowo prostym związkiem którego kryształy ulegają podskakiwaniu jest 1,2,4,5-tetrabromobenzen.

Najciekawszy jest jednak efekt odkryty zupełnie niedawno - podskoki lub wręcz wybuchowa fragmentacja kryształy pod wpływem światła ultrafioletowego. Igiełkowate kryształki o wielkości do 1 mm odsakiwały nawet na kilkanaście centymetrów, a więc na odległość tysiące razy większą od własnej wielkości. Przy pomocy szybkiej kamery i ten efekt dało się utrwalić:

Są to kryształy stosunkowo prostego i jak sądzę łatwego do otrzymania kompleksu kobaltu [Co(NH3)5(NO2)]Cl(NO3) , zaś mechanizm powstawania tak silnych naprężeń, opiera się na jeszcze innej zasadzie. Jednym z ligandów wokół centralnego atomu kobaltu jest ligand nitrytowy NO2, który łączy się z kobaltem za pomocą wiązania koordynacyjnego poprzez azot. Ligand ten mógłby jednak równie dobrze połączyć się poprzez któryś z tlenów, tworząc nieco inny kompleks, i jak się wydaje, podczas naświetlana ultrafioletem taka przemiana właśnie następuje.
Ligand obraca się i przyłącza od innej strony co zmienia upakowanie cząstek, a ponieważ obracają się praktycznie wszystkie w krysztale, bez wytwarzania nowej fazy krystalicznej, dochodzi do nagromadzenia się naprężeń mechanicznych. Znane są dwie formy krystaliczne tego kompleksu - jedna, znana już dotychczas, o pokroju wykształconym przez dodatek inhibitora powodującego zmianę kształtu zarodka. Takie kryształy po oświetleniu ultrafioletem wyginały się, z wypukłością skierowaną w stronę źródła światła, a po kilku godzinach powracały do stanu pierwotnego.
Druga forma to kryształy otrzymane bez dodatków, mniej plastyczne, w których naprężenia nie mogły stopniowo uwalniać się w ciągłym ruchu. Mogło to nastąpić dopiero w wyskoku, do którego dochodziło na kilka sposobów - przez odłamanie końcówki, odłamanie naroży, przełamanie na pół lub podskok całego kryształu bez rozpadu
Czasem kryształ roztrzaskiwał się na kilka kawałków. Zjawisko nazwano "photosalient effect" co tłumaczyłbym jako "efekt fotosprężynujący".

Autorzy artykułu na temat odkrycia przypuszczają, że może przydać się w maszynach molekularnych lub, po opanowaniu, w materiałach w rodzaju sztucznych mięśni.[3] Osobiście obstawiałbym jednak że w zestawieniu z kryształami piezoelektrycznymi mógłby służyć go generowania pojedynczych silnych impulsów, na przykład w pewnych typach czujników.
--------
ResearchBlogging.org [1] Skoko Ž, Zamir S, Naumov P, & Bernstein J (2010). The thermosalient phenomenon. "Jumping crystals" and crystal chemistry of the anticholinergic agent oxitropium bromide. Journal of the American Chemical Society, 132 (40), 14191-202 PMID: 20860383 
[2] Ovcharenko VI, Fokin SV, Fursova EY, Kuznetsova OV, Tretyakov EV, Romanenko GV, & Bogomyakov AS (2011). "Jumping crystals": oxygen-evolving metal-nitroxide complexes. Inorganic chemistry, 50 (10), 4307-12 PMID: 21491890
[3]  Prof. Panče Naumov, Dr. Subash Chandra Sahoo, Dr. Boris A. Zakharov, Prof. Elena V. Boldyreva (2013). Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping (The Photosalient Effect) Angewandte Chemie International Edition DOI: 10.1002/anie.201303757
 [To swoją drogą dosyć dziwna praca. We wstępie autorzy odnoszą się do tego iż dotychczas samoczynne ruchy obserwowano w przyrodzie ożywionej, a więc u zwierząt i u roślin, zaś efekt fotosprężynujący jest ciekawym przykładem ruchów w przyrodzie nieożywionej. Ten fragment został opatrzony aż ośmioma przypisami do prac i książek na temat ruchów w świecie zwierzęcym i przypadkowych prac na temat ruchów roślin. Nie wiem na ile zgadza się to z przyjętymi zwyczajami, ale wygląda mi na sposób zwiększenia objętości bibliografii, aby - kto wie? - całość lepiej wyglądała]

niedziela, 20 października 2013

Salmiak

Dwa wspomnienia i trochę historii.

Na pierwszym roku studiów jednym z przedmiotów było laboratorium chemii nieorganicznej. Robiliśmy tam różne podstawowe doświadczenia, jak strącanie osadów, spalanie magnezu i sprawdzanie czy na pewno na zimno nie reaguje z wodą (reagował) reakcje redoks itp. Jednym z nich było sprawdzenie reakcji kwasu solnego i amoniaku.
Oba roztwory umieściłem w małych zleweczkach i nakryłem zlewką dużą. Po chwili z jednej z nich zaczął się unosić biały dym:

który z czasem wypełnił całą zlewkę:
Dym wychodził zapewne ze zleweczki z amoniakiem, ale nie jestem pewien. Skąd wziął się ten dym?
Zarówno roztwór amoniaku jak i kwas solny chętnie uwalniają opary lotnych związków w nich rozpuszczonych - a więc gazowy amoniak i gazowy chlorowodór, te reagują ze sobą dając drobne cząstki stałej soli - chlorku amonu nazywanego salmiakiem:
 NH 3 + HClNH 4 Cl

Cząstki są tak drobne że tworzą dym podobny do mgły. Dawniej zresztą mieszanie par tych dwóch związków było sposobem na wytworzenie sztucznego dymu, z czego jednak zrezygnowano z powodu działania drażniącego oczy.

Salmiak jest jedną z najstarszych znanych soli nieorganicznych, pierwszą solą amoniakalną i jednym z pierwszych związków wytwarzanych sztucznie. Występuje naturalnie ale w dość specyficznych warunkach, łatwo bowiem rozkłada się z wydzieleniem lotnego amoniaku i dobrze rozpuszcza w wodzie; zazwyczaj spotyka się go w pobliżu otworów którymi ulatują gorące gazy wulkaniczne, ale też w miejscach wylotu spalin z podziemnych pożarów węgla i torfu czy wewnętrznych pożarów hałd kopalnianych. W mniejszych ilościach powstaje w pobliżu złóż guana powstającego z ptasich odchodów.
Pierwsze informacje na jego temat pochodzą z Egiptu a konkretnie z oazy Siwa, gdzie w starożytności stała znana i często odwiedzana świątynia Ammona. Greccy pisarze opisują iż w pobliżu świątyni, w miejscu gdzie wielbłądy licznych pielgrzymów oddawały mocz w zasoloną ziemię, krystalizowała biała sól o właściwościach ściągających, nazywana Solą Ammona czyli sal ammonicum. Popularna nazwa salmiak jest więc skrótem. Był używany w medycynie jako środek moczopędny, odkażający i przeczyszczający, zewnętrznie jako składnik maści. Alchemicy widzieli w nim pierwiastek lotności, bowiem przy ogrzewaniu sublimował zaś opary po ochłodzeniu ponownie zamieniały się w stałe cząstki w formie już tu pokazanego dymu. W zasadzie nie jest to typowa sublimacja - wprawdzie w parach występuje gazowy związek, ale składają się one głównie ze związków składowych, a więc amoniaku i chlorowodoru, po ochłodzeniu natychmiast reagujących ze sobą.

Otrzymywano na dużą skalę już na początku średniowiecza z popiołu po spaleniu suszonych odchodów krowy, lub wykrystalizowując z ługu mieszaniny soli i starej uryny. W mieszaninie z ałunem był stosowany w zaprawach farbiarskich. Mniej więcej w XV wieku pokazano, że po zmieszaniu z wapnem wydziela ostre opary, łatwo rozpuszczające się w wodzie. W XVIII wieku nauczono się go otrzymywać z produktów suchej destylacji szczątków zwierzęcych, takich jak rogi, kopyta czy skóry, łapiąc opary w wodzie i zakwaszając ją kwasem solnym.
Sam roztwór przed zakwaszeniem, będący w zasadzie wodą amoniakalną, był używany jako odplamiacz. Z suchych oparów krystalizował w tym procesie węglan amonu, zwany z tego powodu "solą rogu jeleniego" i używany jako pierwszy spulchniacz do pieczywa (dziś jest to "amoniak do ciast") oraz składnik soli trzeźwiących.
Współcześnie chlorek amonu jest używany w metaloplastyce jako składnik pasty oczyszczającej powierzchnię metalu przed lutowaniem, lub metalową formę przed odlewem, zwykle ma postać małych kostek lub stanowi warstewkę pokrywającą laseczkę lutu cynowego. Jego użycie opiera się na fakcie, że podczas rozkładu w wysokiej temperaturze reaguje z tlenkami na powierzchni metalu, przeprowadzając je w stosunkowo dobrze lotne w tych temperaturach chlorki, dzięki temu lutowane powierzchnie są czyste i stop będzie dobrze do nich przylegał.
W mniejszym stopniu używa się go jako dodatku spożywczego (jako E510), głównie do ciast i chleba, ułatwia bowiem wyrośnięcie ciasta drożdżowego. W krajach skandynawskich popularnym smakołykiem są cukierki Salmiakki, będące zagęszczonym wyciągiem z korzenia lukrecji zmieszanym z salmiakiem, który przełamuje intensywnie słodki smak lekko ostrym, słonawym posmakiem, wywołującym przejściowe wrażenie utraty smaku. Nie miałem okazji próbować więc dokładniej nie opiszę. Związek bywa też składnikiem syropów na kaszel, jest bowiem wykrztuśny.

Reakcja pomiędzy oparami prowadząca do powstania salmiaku staje się też przyczyną często spotykanego w laboratoriach zjawiska powstawania białego osadu na szkle. Butelki ze stężonymi kwasami i zasadami często są przechowywane z przeszklonym dygestorium z mechaniczną wentylacją zasysającą opary na zewnątrz pomieszczenia. Nocą jednak wyciąg zazwyczaj jest wyłączany, toteż z butelek wody amoniakalnej i kwasu solnego mogą przez drobne nieszczelności ulatniać się opary. Po pewnym czasie wszystkie szyby dygestorium pokryte są białym, mączystym osadem.
O tym jak dalece zajść może ten proces przekonałem się niedawno, gdy szukając opakowania żelu krzemionkowego otworzyłem jedną z szafek, znajdując tak takie oto cudo:

Naczynie z wodą amoniakalną obrosło porowatą masą białych kryształków, przypominającą szron. Ponieważ w tej samej szafce stała butelka ze stężonym kwasem solnym łatwo się było domyśleć przebiegu procesu - w dawno nieotwieranej szafce na butelce amoniaku powstawał salmiak, przez który jednak nadal przesączały się opary z wnętrza naczynia, dlatego małe kryształki mogły powoli narastać tworząc skupiska podobne do białego mchu.

Odstawiłem ją z powrotem. Niech rośnie.