informacje



wtorek, 29 listopada 2016

Chromatografia czarnych markerów

Czyli o tym, że czerń może się różnić od czerni.

Mając chwilkę czasu w laboratorium, zabawiłem się w rozdzielanie na składniki czarnych markerów, jakie były na stanie pracowni do szkła i plastiku:
W jaki sposób? Techniką jaka posłużyła mi do tego zadania, była chromatografia cienkowarstwowa.

O chromatografii kiedyś już pisałem (artykuł). Jest to technika rozdzielająca mieszaniny na poszczególne składniki, pozwalająca dzięki porównaniu ze wzorcami też na ich oznaczenie. Odkryta na początku XX wieku przez rosyjskiego botanika Cwieta stała się dziś jedną z podstawowych technik analitycznych.
Cały proces opiera się o zachodzenie dwóch przeciwstawnych zjawisk - adsorpcji substancji na powierzchni chłonnego materiału i jej wypieraniu przez cząsteczki rozpuszczalnika. To na ile mocno substancja zwiąże się z podłożem zależy w dużej mierze od tego co to jest za substancja i jakie jest to podłoże.
Na adsorbencie będącym materiałem polarnym, wchłaniającym wodę, łatwiej będą się osadzać substancje polarne, hydrofilowe, zaś aby je dobrze wymyć trzeba użyć także odpowiednio silnego, polarnego rozpuszczalnika. Podobne do podobnego. Siła oddziaływania substancji z podłożem zależy od budowy i wielkości cząsteczki - obecność atomów niemetali z wolnymi parami elektronowymi (tlen, siarka, azot) sprzyja tworzeniu wiązań wodorowych, które mocniej wiążą cząsteczkę. Dla układów gdy podłoże jest niepolarne, tłuste, siłę wiązania zwiększają grupy węglowodorowe. Duża cząsteczka niepolarna może się lepiej wiązać z niepolarnym podłożem niż mała.
Natomiast siła z jaką rozpuszczalnik wymywa substancję zależy od tego jak silnie z nią oddziałuje i od tego na ile silnie wiąże się z podłożem.

Wszystkie te efekty powodują, że różne substancje mają różną siłę osadzania się na materiale chłonnym, czyli różne powinowactwo. Jeśli umieścimy mieszaninę na początku masy adsorbenta i będziemy przepuszczać przez niego rozpuszczalnik, składniki najsłabiej oddziałujące z podłożem popłyną najszybciej, a te najmocniej popłyną najwolniej. Przypomina to sytuację gdy na stadionie sportowym do biegu na kilometr zgłosi się mieszanka młodzików i dobrze wytrenowanych sportowców - ci lepsi szybko oddzielą się od słabszych, tworząc osobną grupkę.
Spróbujmy zrozumieć na czym polega to zróżnicowanie prędkości. Powierzchnia ziaren podłoża jest na tyle duża, że rozpuszczona porcja substancji nie przepływa po prostu kanalikami, tylko zostaje cała skutecznie wyłapana i osadzona. Ale zarazem z tyłu czysty rozpuszczalnik wymywa substancję i przeprowadza przez nasycone ziarna do przodu, gdzie osadza się na jeszcze nie pokrytym podłożu. Bardziej więc przypomina to ruch wydmy gnanej wiatrem niż prosty przepływ. Jeśli substancja lepiej oddziałuje z podłożem, jest słabiej wymywana przez rozpuszczalnik. W efekcie więcej czasu pozostaje związana i zostaje w tyle za lepiej wymywanymi.
W ten sposób skomplikowane mieszaniny kilkunastu czy kilkudziesięciu składników mogą zostać rozdzielone.
Barwne składniki wyciągu z zielonych liści

W moim przypadku podłożem, adsorbentem, była cienka warstwa masy krzemionkowej osadzona na aluminiowej folii. Miałem do użytku na pracowni cały arkusz, który zużywałem przy kolejnych syntezach podczas sprawdzania, czy reakcja zaszła, a gdy został mi na koniec taki nierówno wycięty kawałek, postanowiłem użyć go do opisanego tu doświadczonka.
Na starcie, nad brzegiem płytki, naniosłem kropki czterema czarnymi markerami, jakie akurat miałem dostępne. Jako naczynia użyłem najmniejszej zleweczki i przykrywki od naczynka pomiarowego. Nie pamiętam jaki dokładnie był skład rozpuszczalnika, ale generalnie był to chlorek metylenu z odrobiną octanu etylu, bo tego akurat używałem.
Aby proces chromatograficzny zachodził, należało wytworzyć ruch rozpuszczalnika w materiale płytki, użyłem tu znanego zjawiska podciągania kapilarnego - wlałem do zlewki taką ilość rozpuszczalnika, aby cały dolny brzeg był zanurzony, ale też aby zarazem same plamki mi się w nim nie moczyły, i przykryłem całość nakrywką, aby nie parowało. Zanim płytka nasiąknęła co górnego brzegu minęło kilka minut, toteż film nakręcony podczas procesu trochę przyspieszyłem:



Jak widzicie cztery z pozoru identycznie czarne plamki rozwinęły się w różnokolorowe pasma.

Generalnie rzecz biorąc nie ma czarnych barwników. Czerń powstaje wtedy, gdy substancja pochłania tak dużo światła, że oko nie rejestruje konkretnego koloru. Zwykle jednak po mocnym rozjaśnieniu czerń okazuje się być bardzo, bardzo ciemnym konkretnym kolorem. Mogą istnieć czarne pigmenty, to jest stałe substancje pochłaniające w dużym stopniu wszystkie kolory światła, tu najczęściej używany jest węgiel. Trudno jednak zastosować pigment w farbach wodnych i w flamastrach, w których tusz z wkładu przesiąka do końcówki przez porowaty materiał, działający raczej jak sito dla stałych cząstek.
Producenci używają więc mieszanek różnych barwników o dużej sile barwienia. Gdy na dany barwnik pada światło białe, pochłania on z zakresu pewne kolory a odbija inne. Jeśli dobierzemy barwniki tak, że każdy kolor będzie po trochę pochłaniany, mieszanka będzie wyglądała na czarną. A jak pokazało moje małe doświadczenie, różni producenci lubią też używać różnych, unikalnych mieszanek:
Jak widać markery Granit i BIC mają podobny składnik podstawowy - dość polarny, intensywnie fioletowy barwnik, zostający z tyłu. Zastanawiałem się czy nie jest to aby fiolet krystaliczny, ale nie miałem gencjany do porównania. Jednak dalsze składniki różnią się wyraźnie - w jednym jest to łatwo rozpuszczalny brunatny składnik, w drugim dwa składniki, jeden żółtobrązowy drugi natomiast nieco różowawy. Może być on identyczny ze składnikiem markera trzeciego "Pilot", leżącym na tej samej wysokości. Tam podstawowym barwnikiem jest leżący niżej składnik granatowy.
W przypadku czwartego markera, Pentel Pen, składniki okazały się w układzie na tyle dobrze rozpuszczalne, że bez wyraźnego oddzielenia popłynęły na sam koniec, tworząc czarną plamkę.

Ten obraz poszerzyć może badanie wyglądu płytki w ultrafiolecie, ujawniające składniki nie widoczne gołym okiem. Substancje fluoryzujące świecą własnym światłem:
Jak widzimy pojawia się nam kolejna różnica między dwoma pierwszymi markerami - BIC zawiera dodatkowy składnik świecący w ultrafiolecie na jasno niebiesko. Możliwe, że w mniejszej ilości zawierają go też dwa po bokach, słabo świecące na tej samej wysokości. Takie świecenie na brzegu kolorowej plamy oznacza, że w zastosowanym układzie rozpuszczalników nałożyły się nam na siebie dwie substancje, a więc nie udało się ich zupełnie rozdzielić.
Po co niewidoczny gołym okiem składnik w markerach? Ponieważ świeci w ultrafiolecie, to musi go też pochłaniać, jest to więc zapewne składnik chroniący pozostałe barwniki przed degradacją na świetle, powstrzymujący blaknięcie rysunków.

Różnice w składzie tuszu markerów, ale też tuszu długopisów czy atramentu piór wiecznych mają istotne znaczenie w kryminalistyce, aby wyryć czy badane dokumenty, na przykład testament, nie były później uzupełniane. Jeśli sprawca użył innego długopisu, różny skład potwierdzi dopiski. Oczywiście nie wkładamy w tym celu dokumentu do naczynia z rozpuszczalnikiem aby spojrzeć na powstające kolorowe plamki. Bądź pobiera się drobną próbkę z dokumentu i bada którąś do dokładnych technik chromatograficznych, jak wysokosprawna cieczowa, bądź wyznacza technikami nieinwazyjnymi, jak spektroskopia Ramana czy UV-Vis

A jak wykonać podobne doświadczenie u siebie w domu? Specjalistycznych płytek TLC nie trzeba kupować. Za cienki materiał chłonny wystarczy arkusz grubej bibuły, na przykład gęsty filtr do kawy, można też próbować ze sztywnym, kredowym papierem. Mi kiedyś udało się to z papierem do kserowania.
Wycinamy z papieru pasek o takiej szerokości aby zmieściły się nam kropki wszystkich flamastrów jakie chcemy zbadać, długi na kilka centymetrów. Znajdujemy wysokie naczynie o płaskim dnie, może to być słoik, szklanka, opakowanie po czymś, tak aby nasz pasek się w nim mieścił.
Teraz kwestia rozpuszczalnika - dość dobrymi, mocno wymywającymi, jest spirytus i zmywacz do lakieru do paznokci. Jeśli okażą się zbyt mocne i podczas próby wszystkie kolory od razu pójdą do góry, możemy spróbować domieszać jakiegoś słabszego składnika, może to być na przykład jakiś rozpuszczalnik do usuwania tłustych plam. Jeśli badamy markery nierozpuszczalne, pomocne może być dodanie odrobiny wody - wprawdzie jest bardzo polarna, ale gdy składniki barwne się w wodzie słabo rozpuszczają, woda może pogorszyć ich wymywanie z papieru i spowolnić. Tu już trzeba sobie poeksperymentować.

Przygotowaną mieszankę wlewamy na dno naszego naczynia, wkładamy pasek papieru z naniesionymi u dołu kropkami markerów tak aby opierał się o ściankę. Ponieważ nasiąkający papier traci sztywność, aby się nam nie przewrócił i nie wpadł możemy bądź zawinąć górny brzeg na brzegu naczynia, lub użyć spinacza do papieru, ewentualnie przewlec nitkę przez otwór w papierze i podwiązać. Pasek nie powinien przylegać do ścianki naczynia, rozpuszczalnik będzie wówczas podsiąkał w szczelinie między nimi i całość się rozmyje. Naczynie czymś przykrywamy aby rozpuszczalnik nie parował i czekamy aż cały pasek nasiąknie.

wtorek, 15 listopada 2016

Ostatnio w laboratorium (53.)

Z zajęć na temat krystalochemii - kryształy paracetamolu pod mikroskopem:

Nie zupełnie foremne i z inkluzjami. Miały długość około 1 mm.

niedziela, 30 października 2016

Dlaczego osm jest najgęstszym pierwiastkiem?

Witam po dłuższej przerwie.

Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.

Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?

Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość

Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
 Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
 Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.

Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.

Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.

Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.

Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.

ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
[1]  John W. Arblaster, Is Osmium Always the Densest Metal?, Johnson Matthey Technol. Rev., 2014, 58, (3), 137 doi:10.1595/147106714x682337

*  https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v

wtorek, 13 września 2016

Chemiczne wieści (9.)

Reakcja w kroplach nad rozgrzaną blachą
Efekt Leidenfrosta jest jednym z tych ciekawych zjawisk fizycznych, jakie z pewnością każdy miał okazję obserwować, tylko nie specjalnie zastanawiał się nad jego przyczyną. Upuszczenie kropli wody na bardzo rozgrzaną blachę, kuchenkę elektryczną czy patelnię powoduje, że zamiast zwyczajnie odparować przez pewien czas szybko śmiga niczym mały poduszkowiec.
Odpowiednio duża różnica temperatur powoduje, że rozgrzewanie całej kropli jest wolniejsze niż odparowanie porcji najbliżej blachy. Powstająca para wodna ma ciśnienie wystarczające, aby unieść nad gorącą powierzchnię całą kroplę, która nie ma bezpośredniego kontaktu, spowalniając wyparowanie kropli wielokrotnie.

Zespół amerykańskich naukowców z Purdue University wykorzystał ten efekt, tworząc z kropelek mikroreaktory do przeprowadzenia reakcji. Wcześniej znany był już efekt przyspieszania reakcji w kropelkach powstających przy rozpryskiwania roztworów techniką elektrospreju.  Prawdopodobnie na granicy faz następowała adsorpcja naładowanych reagentów, które wobec tego były tylko częściowo solwatowane przez rozpuszczalnik. Niecałkowita otoczka solwatacyjna obniżała energię aktywacji reakcji między składnikami roztworu. Ze względu na mikroskopijne rozmiary powstających kropelek, stosunek objętości do powierzchni był bardzo korzystny. Z drugiej strony efekt obserwowano w bardzo niewielkiej ilości mieszaniny reakcyjnej, przez co trudno bylo zjawisko w jakiś sposób zastosować.

Tutaj pomysł był podobny, tylko kropelki większe, bo otrzymywane przez efekt Leidenfrosta. Za modelową reakcję posłużyła kondensacja ketonu z pochodną hydrazyny. Reagenty rozpuszczono w rozpuszczalniku i upuszczono po kropli na rozgrzane szkiełko zegarkowe, utrzymując kropelkę przez dwie minuty w stanie lewitacji. Po zbadaniu roztworu stwierdzono, że reakcja zachodziła z nawet pięćdziesięciokrotnie większą szybkością. Tą metodą można poddawać reakcji miligramowe iloci reagentów, możliwe, że nawet większe jeśli udałoby się zbudować układ w którym krople mogłyby odpowiednio długo wędrować jedna za drugą. [1]


Najsilniejszy niefluorowy utleniacz
Utlenianie to w rozumieniu chemików reakcja polegająca na odebraniu reagującemu atomowi elektronów (dezelektronacja). Tlen i zawierające go związki są dość dobrymi utleniaczami, ale nie jedynymi, przykładowo gazowy chlor reagując z metalicznym sodem odbiera mu elektron, utleniając do kationu sodowego; sam redukuje się więc do anionu chlorkowego i tworzy związek chlorek sodu, czyli sól kuchenną.

W roli utleniacza zadziałać może też elektroda z przyłożonym odpowiednim napięciem. W procesie elektrolizy jedne składniki roztworu są utleniane a inne redukowane, lecz materiał elektrody nie ulega w tych procesach przemianom, jest jedynie przekaźnikiem elektronów które są przez potencjał elektryczny bądź wyciągane bądź wpychane w reagującą cząsteczkę. Oczywiście aby doszło do reakcji i aby elektron przeskoczył z miejsca na miejsce, należy użyć odpowiednio dużej energii, a w tym przypadku przyłożyć do elektrody odpowiednio duże napięcie, poniżej którego reakcja nie zajdzie.
Dzięki temu badając napięcie przy którym na elektrodzie następuje dana reakcja, można porównać związki i ich skłonności do oddawania lub przyjmowania elektronów, a tym samym moc różnych reduktorów lub utleniaczy. Zajście reakcji utlenienia przy pomocy danego utleniacza, to odpowiednik potencjału X woltów. Stąd biorą się tabele potencjałów standardowych, jakie zapewne widzieliście w podręcznikach. Z tego jaką wielkość mają potencjały dwóch substancji i jaka jest między nimi różnica, można zgadnąć czy zajdzie nimi reakcja redoks i w którą stronę. Ten który ma potencjał bardziej dodatni, będzie utleniaczem, ten który będzie miał potencjał bardziej ujemny będzie reduktorem. Im większy jest między nimi odstęp, tym energiczniej zachodzi reakcja, a więc tym chętniej.
Dla układów pośrodku skali potencjałów (standardowo za 0 przyjmuje się potencjał reakcji redukcji kationów wodorowych), substancje zależnie od tego z czym się spotkają mogą być utleniaczami lub reduktorami. Na dodatnich i ujemnych krańcach skali znajdują się związki i jony pierwiastków, które zwykle traktuje się po prostu jak utleniacze lub reduktory zawsze, bo na przykład osiągnęły maksymalną wartościowość której już nie zwiększą albo nie bardzo mają okazję przereagować z czymś silniejszym (ale czasem mają - nadtlenek wodoru, generalnie utleniacz, w reakcji z jonami srebra redukuje je do obojętnego metalu, a sam utlenia się do... tlenu).

Generalnie w takim ujęciu za utleniacze silne uznaje się już układy o potencjale standardowym powyżej +2 V. Utleniaczem silnym jest więc na przykład nadsiarczan sodu (E0= +2 V), od niego silniejszy jest pierwiastkowy fluor (E0= +2,8 V), kwas ksenonowy (+2,5 V), i różne układy oparte o fluor lub chlor. Do najsilniejszych należy rodnik fluorowy, który w reakcji z kationem wodoru utlenia go z potencjałem +3,87 V i difluorek kryptonu KrF2 o potencjale +3,27 V.
Fluor pojawia się tutaj nieprzypadkowo - pierwiastek ten ma wysoką elektroujemność, co oznacza że trudno go zjonizować, oraz ze chętnie przyciąga elektrony. Najsilniejsze znane utleniacze są więc związkami fluoru. Przynajmniej aż do teraz.

Grupa badaczy z Uniwersytetu Warszawskiego opublikowała niedawno wyniki eksperymentów z otrzymaniem bardzo silnego utleniacza, jakim okazały się kationy srebra II. Jest to dla srebra stan utleniania bardzo nietrwały, stąd duża energiczność reakcji dzięki której może przejść w bardziej trwały kation srebra I. W specyficznych warunkach stężonego oleum, które wpływają na przebieg reakcji, utlenienie przy pomocy srebra II osiąga potencjał standardowy +2,9 i jest najwyższą znaną wartością dla utleniaczy nie zawierających fluoru. Prawdopodobnie kationy metalu są solwatowane przez cztery cząsteczki kwasu, co ma duże znaczenie dla potencjału utleniania. Utleniacz o takiej sile mógłby być użyty do rozkładu niektórych trudnych do przetworzenia zanieczyszczeń.[2]

Niskotemperaturowa synteza amoniaku
Jednym z najbardziej znanych procesów przemysłowych, wykorzystywanym na gigantyczną skalę, jest synteza amoniaku z azotu, pozwalająca na otrzymanie związków azotowych, zużywanych potem głównie do produkcji nawozów sztucznych. Najpospoliciej stosowaną obecnie jest metoda Habera-Bosha, polegająca na reakcji wodoru i azotu pod ciśnieniem kilkuset atmosfer i temperaturze 500 stopni, z użyciem katalizatora żelazowego. Mimo tych ekstremalnych warunków metoda jest opłacalna. Wcześniej próbowano takich reakcji jak otrzymywanie azotku magnezu i rozpuszczanie go w kwasach, czy hydroliza cyjanamidu wapniowego (tzw. azotniak).

Jednak ostatnia praca chińskich badaczy z Dalian Institute of Chemical Physics pokazuje że potencjalnie możliwe jest przeprowadzenie tego procesu w bardziej łagodnych warunkach.

Zespół pierwotnie zajmował się badaniem materiałów do pochłaniania i przechowywania wodoru. Podczas cykli wygrzewania oprócz wodoru powstawały też pewne ilości amoniaku, wskutek niepożądanej reakcji ubocznej. Dość przypadkowo, podczas symulacji sprawdzających przebieg tej reakcji, badacze stwierdzili że proces uwodornienia azotu jest sam w sobie dość obiecujący. Zachodzące podczas syntezy procesy obejmują adsorpcję azotu na metalu, aktywizację cząsteczki, przyłączenie wodoru i dysocjację. Idealny katalizator powinien dobrze aktywować azot ale też słabo wiązać aktywowaną cząsteczkę. niestety w przypadku metali przejściowych dobre wiązanie i aktywizowanie azotu wiązało się też z trudnym odłączaniem zaktywizowanej formy. Właśnie konieczność odłączenia cząsteczki od katalizatora powodowała, że potrzebna była tak wysoka temperatura.
Pomysł Chińczyków był generalnie dość prosty - należy użyć dodatkowego katalizatora. Tym katalizatorem okazał się wodorek litu.

Centrum reakcyjne ma postać drobnych plamek wodorku litu na powierzchni katalizatora metalicznego. Cząsteczka azotu przyłącza się w pobliżu, w związku z utworzeniem wiązania azot-metal zostaje zaktywizowana. Pobliski wodorek litu jest reduktorem, oraz odszczepia bardzo reaktywny anion wodorkowy. W efekcie pobliska cząsteczka azotu zostaje zredukowana i odszczepiona, równocześnie z przyłączeniem wodoru. Powstający amidek litu reaguje z wodorem, odnawiając wodorek litu i odłączając amoniak.
Taki podwójnie katalizowany proces może być przeprowadzony w dużo łagodniejszych warunkach. Dla katalizatora żelaznego z domieszką wodorku litu proces zachodził wydajnie już w temperaturze 150 stopni Celsiusza. [3]

Rośliny oczyszczają domowe powietrze
Powietrze w domach i mieszkaniach różni się od tego napływającego z zewnątrz. Nie dość, że dostają się do niego związki wydzielane przez nas samych, uwalniane podczas gotowania czy codziennej toalety, to jeszcze swoje dokładają lotne składniki farb, materiałów budowlanych, mebli i elementów wystroju wnętrz. Niektóre z nich mogą mieć działanie szkodliwe, dlatego dobrze jest co jakiś czas wietrzyć mieszkanie. Zaleganie toksycznych oparów w pomieszczeniach, uwalnianych przez ściany i sprzęty domowe, jest niekiedy wiązane z "zespołem chorego budynku" powodującego różne, często trudne do określenia dolegliwości, jak bóle głowy, alergie, napady astmy, uczucie zmęczenia.
Do sposobów unikania tego zjawiska należy polepszenie wentylacji i napływu powietrza z zewnątrz lub stosowanie filtrów pochłaniających. Znane były też badania sugerujące, że pewne związki mogą pochłaniać z powietrza rośliny doniczkowe.

Zespół amerykańskich badaczy postanowił precyzyjniej porównać zdolności oczyszczania powietrza przez różne gatunki w tej samej przestrzeni. Wzięto pięć gatunków często używanych jako rośliny doniczkowe i sprawdzano jak ich obecnośc wpływa na stężenia lotnych związków w specjalnie przygotowanej komorze. Były to: zielistka, dracena, bromelia guzmania, grubosz (znany też jako drzewko szczęścia) i kaktus Consolea.
Przetestowano ich aktywność na ośmiu przykładowych związkach, stwierdzając że pewne gatunki mają wyjątkowo dużą skłonność do wchłaniania niektórych. Przykładowo dracena wchłaniała 90% acetonu obecnego w powietrzu. Najlepszą z badanych okazała się bromelia, która dla sześciu lotnych związków eliminowała 80% obecnej ilości.[4]


Prosta i tania metoda otrzymywania
Wiele substancji znajdujących ciekawe zastosowania bądź występuje w naturze zbyt rzadko aby możliwe było tanie ich pozyskanie, bądź nie występuje w niej w ogóle. Dlatego trzeba je otrzymywać przy pomocy metod syntetycznych. Jednak w przypadku niektórych skomplikowanych cząsteczek, synteza przestaje być tak dobrą alternatywą, jeśli jest złożona z wielu etapów w których zużywa się wiele różnorodnych reagentów, tym bardziej, że im więcej etapów pośrednich tym mniejsza wydajność końcowa. 10 etapów o wydajności 80% przekłada się na wydajność całkowitą 10%
Dlatego też chemicy szukają sprytnych sposobów aby konstruować cząsteczki w mniejszej ilości etapów, szybciej i z mniejszą ilością reagentów. Takimi prostymi skokami omijającymi parę etapów są reakcje wieloskładnikowe, gdy to reakcję przeprowadzamy na mieszaninie kilku składników, które w trakcie tego samego procesu reagują ze sobą w określonej konfiguracji; reakcje kaskadowe gdy odpowiednio skonstruowana cząsteczka ulega serii wewnętrznych przekształceń, oraz reakcje rednoreaktorowe (one pot) gdy kolejne etapy są dokonywane dolewając następne reagenty do mieszaniny po poprzedniej reakcji, bez często żmudnego procesu izolowania czystych produktów pośrednich.

Przykładem może być praca jaka wpadła mi w oko, opisująca nową metodę syntezy (-)-ambroksanu, terpenoidu będącego głównym składnikiem zapachowym naturalnej ambry. Ta naturalna jest rzadka i droga i nie sposób zwiększyć jej pozyskania*, dlatego główny pachnący związek otrzymuje się syntetycznie.
Związkiem wyjściowym jest sklareol, otrzymywany z olejku eterycznego szałwii muszkatołowej, bo to najtańsze źródło. Cząsteczka jest generalnie bardzo podobna do ambroksanu, należy jedynie zamknąć trzeci pierścień w formie eteru i odrzucić niepotrzebne dwa węgle, ale bez zmiany konfiguracji jednego centrum stereogenicznego:
Opisano kilka metod przeprowadzenia takiej reakcji, które są wykorzystywane w przemyśle, mają one jednak tą wadę, że są przeprowadzane w kilku etapach. Czyli substancja wyjściowa jest poddawana reakcji, po której półprodukt jest oddzielany i używany do następnego etapu. Każdy taki proces następuje ze skończoną wydajnością, sumą kilku procesów jest bardzo mała wydajność końcowa, do tego dochodzą koszty zużytych w każdym etapie odczynników. Dlatego nowa metoda w której używa się tylko dwóch odczynników a całą reakcję przeprowadza się w jednym etapie bez oddzielania związków pośrednich z pewnością wzbudzi zainteresowanie przemysłu.

Sklareol jest rozpuszczany w dioksanie, dodawany jest utleniacz czyli 30% nadtlenek wodoru i katalizator będący fosfomolibdenianem alkiloamoniowym, mieszanina jest ogrzewana najpierw przez dwie godziny w temperaturze 70 stopni a potem godzinę w 90 stopniach. I tyle.  Wydajność to nieco ponad 20%, jest więc jedynie nieco wyższa niż w poprzednich metodach, ale być może da się to jeszcze usprawnić.
Reakcja przebiega prawdopodobnie poprzez utworzenie epoksydu, który cyklizuje i ulega przegrupowaniu.[5]


------
* Ambra to grudki masy będącej zastygniętymi wymiocinami kaszalota, który najadł się zbyt dużo kałamarnic olbrzymich żyjących w głębinach oceanów. Jak na razie nikomu nie udało się ich pod tym kątem tresować.

[1] Bain RM, Pulliam CJ, Thery F, Cooks RG. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets, Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10478-82
[2] Połczyński P.,Jurczakowski R., Grochala W., Stabilization and strong oxidizing properties of Ag(II) in a fluorine-free solvent, Chem. Commun., 2013,49, 7480-7482
[3] Peikun Wang et al, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nature Chemistry (2016).
[4] https://www.acs.org/content/acs/en/pressroom/newsreleases/2016/august/selecting-the-right-house-plant-could-improve-indoor-air-animation.html
[5] Yang, S. et al. One-pot synthesis of (−)-Ambrox. Sci. Rep. 6, 32650; doi: 10.1038/srep32650 (2016).

wtorek, 23 sierpnia 2016

Chemiczne wieści (8.)

Naturalne kompleksy szkieletowe
To akurat odkrycie nie było dla mnie zaskakujące, bo od dawna sądziłem że do niego dojdzie - geolodzy znaleźli na Syberii minerał będący naturalną formą metalo-organicznych szkieletów (MOF) materiałów o dużej porowatości na poziomie cząsteczkowym, o ciekawych właściwościach katalitycznych.

MOFy to interesująca grupa materiałów, będąca w zasadzie usieciowanymi kompleksami wielordzeniowymi - kationy metalu stanowią zworniki sieci tworzonej przez ligandy mogące łączyć się z nimi na dwóch lub więcej końcach. Między nimi powstają puste przestrzenie o zdefiniowanej, określonej wielkości i kształcie, stąd użycie MOFów jako absorbentów do gazów, ale też katalizatorów. Dotychczas wytwarzano je wyłącznie laboratoryjnie.

Przebadanie nowymi technikami rentgenowskimi słabo dotychczas poznanych minerałów stepanowitu (stepanovite) i żemczużnikowitu (zhemchuzhnikovite)* , znalezionych w syberyjskich kopalniach już w latach 60. ujawniło, że są takimi właśnie naturalnymi MOFami. Chemicznie są to mieszane szczawiany żelaza i magnezu, z występującymi w wolnych przestrzeniach jonami sodu i domieszką innych metali; w żemczużnikowicie pewna ilość jonów trójwartościowego żelaza jest wymieniona na podobne wielkością jony glinu[1]
Strukturę potwierdzono dokonując syntezy kryształów o takim składzie.



Najlżejsza cząsteczka pi-aromatyczna
Aromatyczność to szczególny przykład stabilizowania cząsteczki przez rezonans struktur elektronowych.  Wolne pary elektronowe tworzą w takich cząsteczkach płaski, pierścieniowaty orbital na którym ładunek jest równomiernie rozprowadzony, a elektrony wirują jak po karuzeli. Najlepiej przebadana jest aromatyczność związków węgla, natomiast słabiej przebadane są tego typu połączenia zbudowane wyłącznie z innych pierwiastków.

W szeregu węglowodorów aromatycznych najmniejszą cząsteczkę miał kation cyklopropenyliowy, ze zdelokalizowanym układem dwóch elektronów na trójkątnej cząsteczce. Wykazano, że podobny układ mogą tworzyć też inne pierwiastki, krzem, fosfor, glin

Obecnie odkryto prawdopodobnie najlżejszy możliwy taki układ - kation borocyklopropyliowy stabilizowany lekkimi ligandami. Badania spektroskopowe oparów boru poddanych działaniu lasera w obecności odpowiednich gazów, wykazały istnienie względnie stabilnych kationów [B3(NN)3]+ i  [B3(CO)3]+ . Ze względu na małą masę atomową boru, mniejszą niż dla węgla, i małą masę stabilizujących ligandów, są to najlżejsze cząsteczki pi-aromatyczne. [2]

Nieco wcześniej utworzono stabilne kompleksy zawierający pierścień triborocyklopropyliowy, zobojętnione kationami sodu, ale ligandy były dość rozbudowane a pierścienie tworzyły dimer w formie kompleksu kanapkowego, przez co powstała molekuła była dużo cięższa.[3]


------------
* Nazwa minerału Zhemchuzhnikovite pochodzi od angielskiej transkrypcji nazwiska mineraloga Żemczużnikowa, polska transkrypcja nazw rosyjskich jest inna ze względu na istnienie w języku tych samych głosek.

[1] Tomislav Friščić, Minerals with metal-organic framework structures, Sciences Advances,  Vol. 2, no. 8, e1600621, DOI: 10.1126/sciadv.1600621
[2] Gernot Frenking et.al. The [B3(NN)3]+ and [B3(CO)3]+ Complexes Featuring the Smallest π-Aromatic Species B3+Angew. Chem. Int. Ed. Volume 55, Issue 6, Pages 2078–2082
[3] Holger Braunshweid et.al The Triboracyclopropenyl Dianion: The Lightest Possible Main-Group-Element Hückel π Aromatic, Angew. Chem. Int. Ed. Volume 54, Issue 50,  Pages 15084–15088

niedziela, 17 lipca 2016

Reakcja w warunkach ekstremalnych

Otrzymanie odpowiednich wyników w trakcie doświadczenia chemicznego bywa bardzo trudne. Nieraz aby reakcja przebiegła w zamierzony sposób należy stworzyć specyficzne, ściśle określone warunki. Nikomu jednak nie przyszłoby do głowy, że czasem, aby wytworzyć ładne kryształy, należy wyskoczyć z samolotu z próbówką w ręku.
Bardzo emocjonujący eksperyment © University of Melbourne
Chemicy z Uniwersytetu w Melbourne w Australii badający właściwości metaloorganicznych materiałów porowatych (MOF), po sprawdzeniu wpływu jaki wywierają na ich formowanie i krystalizację temperatury, ciśnienia i wielu innych zmiennych, postanowili sprawdzić jaki wpływ może tu mieć zmiana czynnika, przyjmowanego dotychczas za stały - siły ciążenia.

Metal-Organic Frameworks czyli MOFs, co można przetłumaczyć jako "metaloorganiczne szkielety" czy rusztowania, to szczególny rodzaj materiału łączącego właściwości kryształów i ciał porowatych. Są to w zasadzie usieciowane kompleksy, w których jony metalu stanowią zworniki dla regularnej sieci utworzonej przez łączące je ligandy organiczne. Kształt, ilość miejsc wiązania i wielkość ligandów ale też rodzaj i wielkość kationu determinują kształt utworzonej sieci, mogącej przybierać wiele form na podobieństwo zeolitów.
MOFy są obecnie intensywnie badane jako niezwykle obiecujące materiały. Dzięki ogromnej porowatości na poziomie molekularnym mogą być użyte jako pochłaniacze zanieczyszczeń, magazyny gazów, nośniki leków; inne stanowią katalizatory, reaktywne filtry unieszkodliwiające zanieczyszczenia, mogą stanowić elementy czujników. Obecnie co roku publikuje się kilkaset prac na temat nowych przebadanych kombinacji i nowych metod ich otrzymywania.

Znane były już wcześniej pewne efekty grawitacyjne na szybkość krystalizacji. Grawitacja wywołuje opadanie zarodków krystalizacji na dno, gdzie proces jest hamowany w powodu ograniczenia od jednej strony dnem. Powoduje także pojawienie się prądów konwekcyjnych wokół rosnącego kryształu, w związku ze zmianami stężenia a więc i gęstości, co często ma skutek pozytywny. W szczególnych przypadkach może utrudniać powstawanie kryształów dużych molekuł powodując deformowanie się powstającej sieci.
Badacze z Australii przypuszczali, że efekty te będą wpływać także na wielkość kryształów MOFów wytrącających się z nasyconego roztworu, dlatego postanowili sprawdzić jak przebiegać będzie krystalizacja w trzech warunkach - grawitacji normalnej, obniżonej i zwiększonej.

Ten trzeci efekt był akurat dosyć prosty do sprawdzenia - rolę zwiększonej grawitacji pełni siła odśrodkowa. Mieszaninę substratów odwirowywano w wirówce poddając ją przeciążeniu kilkunastu g. Otrzymane w wyniku procesu kryształy były wyraźnie mniejsze od tych dla warunków normalnych.Natomiast uzyskanie obniżonej grawitacji było wyraźnie trudniejsze.

Początkowo badacze zrzucali próbówki z mieszaniną reakcyjną z dachu kilkunastopiętrowego budynku, otrzymując 2-3 sekundy stanu nieważności.
Wyjaśnię tutaj pokrótce, że ciała spadające swobodnie paradoksalnie nie odczuwają ciążenia. Jest to konsekwencją praw dynamiki - grawitacja jako siła działająca na ciało powoduje jego przyspieszenie, toteż ciało spadające swobodnie przyspiesza co sekundę o ok. 10 m/s2. Jednakże przyspieszenie, nie będące ruchem jednostajnym, wzbudza opór czyli bezwładność. Gdy ciało spada swobodnie obie siły się równoważą w efekcie nie czuje ono ciążenia, mimo że siła ciążenia na nie działa, wszak spada. Wykorzystuje się ten efekt w specjalnych samolotach testowych, które wykonują lot nurkowy z prędkością na tyle dużą, że ludzie na pokładzie zaczynają odczuwać nieważność i przez kilkanaście sekund poczuć się mogą jak w kosmosie.
Tak więc w zrzuconych z dachu próbówkach przez pewien czas następowało istotne zmniejszenie grawitacji (nie całkowite zniesienie przez opory aerodynamiczne miękkiego opakowania), mierzone zresztą przez badaczy przy pomocy akceleatora w telefonie komórkowym. Wpływ tego stanu na kryształy był niewielki, ale zauważalny - powstawały większe i czystsze. Jednak z powody bardzo krótkiego czasu efekt był bardzo mały.
Naukowcy zaczęli więc szukać sposobu na wydłużenie okresu małograwitacyjnej krystalizacji. Musiało być to coś sprytnego ale zarazem taniego.  O wysłaniu eksperymentu na międzynarodową stację kosmiczną ani nawet w lot paraboliczny, nie było mowy. Był też pomysł aby zrzucić próbówki z balonu na gorące powietrze albo użyć drona, ale w przypadku lotów dostępnych komercyjnie wysokość była zbyt mała, natomiast w przypadku drona nie dało się rozpocząć procesu w momencie opadania. Po podliczeniu wszystkich kosztów najtańszą opcją okazało się zrzucać badaczy z samolotu.
Czegoś trzeba trzymać się © University of Melbourne

Trzech ochotników: Mattias Bjornmalm, dr. Fabio Lisi i Matthew Faria skoczyło w tandemie z instruktorem z wysokości 4 kilometrów, ściskając w ręku specjalnie przygotowane próbówki - po wyskoku wcisnęli górną część próbówki wstrzykując jeden substrat do drugiego i zapoczątkowując krystalizację w trakcie opadania. Przez pewien czas opadali prawie swobodnie, potem instruktorzy otworzyli spadochrony, ale opadanie ze spadochronem także stanowiło okres o pewnym zmniejszeniu odczuwanego przez kryształy ciążenia. Dla Farii był to pierwszy skok ze spadochronem w życiu.
  Później co prawda okazało się że niektóre próbówki wcisnęły się przedwcześnie a w innej substraty się nie zmieszały, ale udało się odzyskać trzy próbki które krystalizowały podczas lotu. Jak się okazało zmniejszona grawitacja zauważalnie wpłynęła na wielkość kryształów - powstały większe i z mniejszą ilością wad.
Po lewej - kryształy w warunkach normalnego ciążenia; po prawej - hodowane podczas skoku.  © Dr Joseph Richardson et. al
Dla pewnych zastosowań, jak katalizatory czy pochłaniacze gazów, większe i bardziej regularne kryształy MOFów są bardziej przydatne, toteż możliwe że w przyszłości pewne procesy technologiczne będą wykonywane na orbicie (lub w lotach parabolicznych). Do innych zastosowań, jak nośniki leków, lepsze są drobniejsze kryształki, toteż odkrycie że wielkość można regulować przy pomocy wirówek może szybko znaleźć zastosowanie.

------------
* Joseph J. Richardson et al. Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational-Forces, European Journal of Inorganic Chemistry (2016). 

środa, 13 lipca 2016

Chemiczne wieści (7.)

Bateria z jajka
Każdy kto często spożywa jajecznicę wie, że skorupki są odpadem nieco kłopotliwym. Od wewnętrznej strony skorupka jest pokryta białkową błoną. Białko to chętnie gnije po wyrzuceniu do kosza i dorzuca do woni śmieci specyficzny, zgniłojajeczny aromat. Fakt ten jest też zresztą przeszkodą w przetwarzaniu odpadowych skorupek - zarówno przy przerabianiu na suplement diety jak i na dodatek wapnujący do gleby należy oddzielać błonkę, zwykle za pomocą odpowiednich chemikaliów.

Chemicy z Wayne State University w Detroit znaleźli natomiast sposób jak wykorzystać nieoczyszczoną skorupkę do syntezy materiału na elektrody do baterii litowych.


Metoda jest bardzo prosta - nie rozgniecioną skorupkę z jajka umieścili w naczyniu z roztworem wodorotlenku sodu, do środka skorupki dodali natomiast roztwór soli kobaltu. Skorupka posłużyła tu za porowatą, półprzepuszczalną przegrodę, przez którą powoli do wnętrza dyfundowały aniony hydroksylowe OH-. Na podściełającej skorupkę błonie wytrącała się warstewka amorficznego wodorotlenku kobaltu pokrywająca włókna białka.
Po czterech dniach skorupkę wyjęto i wysuszono, po czym już suchą poddano wyprażaniu bez dostępu powietrza w temperaturze 650 stopni. Włókna białkowe uległy wówczas zwęgleniu uwalniając siarkę, która reagowała z kobaltem, tworząc nanopręty siarczku kobaltu osadzone na włóknach węglowych.
Materiał ten może być potem przetworzony na porowatą elektrodę w pewnym typie baterii jonowych, chociaż nie znalazłem w pracy oryginalnej szczegółów na temat oddzielania włókien od skorupki.

Autorzy spekulują, że metoda mogłaby być zastosowana dla wykorzystania skorupek jaj rozbijanych maszynowo, gdzie jest to raczej odsysanie zawartości niż rozbicie, toteż po procesie zostają skorupki w dużym stopni całe.[a]

Imiona nowych pierwiastków
Zaledwie w styczniu oficjalnie uznano istnienie czterech nowych pierwiastków (o czym już pisałem) a już pojawiają się bardziej konkretne propozycje nazw. Grupy badaczy uznane za odkrywców mogą zgłosić własne propozycje nazw, które będą potem brane pod uwagę podczas podejmowania decyzji. Mogą być to nazwy odnoszące się do mitologii, do miejscowości lub minerałów, krajów lub regionów, charakterystycznej własciwosci pierwiastka lub honorujące jakiegoś znanego naukowca. Wedle tych zasad zespoły odkrywców zaproponowały:

- Zespół Riken z Japonii, uznany za odkrywców pierwiastka 113, proponuje nazwę "Nihonium" (Nh) od słowa "nihon" będącego jedną z dwóch nazw Japonii w języku japońskim.

- Zespół z Dubnej w Rosji który odkrył pierwiastek 115 proponuje nazwę "Moscovium) (Mv) od zlatynizowanej nazwy Moskwy.

- Ponieważ zarówno pierwiastek 115 i 117 odkryty został w ramach współpracy ośrodków w Dubnej w Rosji i w Oak Ridge w USA, dla tego drugiego zaproponowano nazwę Tennessine (Tn) od nazwy stanu w którym znajduje się kilka ośrodków badań jądrowych

- Pierwiastek 118 odkryto w ramach współpracy ośrodka w Dubnej i w Berkley, a jako nazwę zaproponowano Oganesson dla uczczenia profesora Jurija Oganessaja, pioniera badań nad poszukiwaniami transuranowców.

Jeśli nazwy zostałyby przyjęte przez IUPAC, to prawdopodobnie zostałyby spolszczone do "nihon", "moskow", "tennesyn" i "oganess". Nie brzmi to zbyt dobrze.[b]

Wystarczy jeden atom
Platyna od dawna znana jest ze swych świetnych właściwości katalitycznych i jest na dużą skalę używana w przemyśle, ale też na przykład jako składnik katalizatorów samochodowych. Poza łatwością zatruwania od pewnych domieszek ma platyna pewną istotną wadę - jest droga. Dlatego też chemicy od dawna starają się jak mogą zmniejszać jej ilość w katalizatorze przy zachowaniu zdolności do przyspieszania reakcji. W zasadzie nie używa się już czerni platynowej to jest jej bardzo drobnych cząstek, lecz raczej różnych materiałów porowatych pokrytych drobnymi ilościami platyny na powierzchni.
Ostatnia praca badaczy z Singapuru pokazuje, że można pójść jeszcze dalej.

Zastosowany przez nich katalizator składał się głownie z porowatego węgla na którego powierzchni osadzono klastry kwasu polifosforanomolibdenowego z przyłączonym jednym atomem platyny (PMo12O403−) Pt . Z jego użyciem możliwe było przeprowadzenie reakcji uwodorniania takich związków jak nitrobenzen, cykloheksanon czy styren, z nienajgorszymi wydajnościami (30-40%) przy stosunkach ilości platyny do substratu od 1:100 do 1:2000, a przy przedłużeniu czasu reakcji udało się nawet niemal całkowicie uwodornić substrakt przy stosunku 1:8000. [c]

------------
[a] X. Meng and Da Deng. Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage. Chem. Mater., 2016, 28 (11), pp 3897–3904 DOI: 10.1021/acs.chemmater.6b01142
[b]  http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/
[c] B. Zhang et.al. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity, Angew. Chem. Int Ed. Volume 55, Issue 29
July 11, 2016 Pages 8319–8323


czwartek, 16 czerwca 2016

Wczoraj w laboratorium (52.)

Wczoraj w laboratorium zająłem się destylacją tiofosgenu - strasznie śmierdzącego i trującego odczynnika.
Tiofosgen to formalnie rzecz biorąc podwójnie zchlorowana grupa tiokarbonylowa. Jego tlenowy analog fosgen był kiedyś używany jako bojowy gaz duszący, co daje już jakieś pojęcie o własnościach.

Zapach nie jest taki zły, jak oczekiwałem sądząc po obecności siarki. Jest ostry, drażniący a przede wszystkim duszący, podobny do innych prostych chlorków kwasowych.

Po co mi on? Do syntezy tiokarbonylodiimidazolu, a ten z kolei jest mi potrzebny do dalszych syntez. Po przeliczeniu wyszło mi, że taniej będzie otrzymać TCDI z tiofosgenu niż zamawiać gotowy. O ile uda się go w końcu zrobić bo już trzy razy próbowałem i powstawały różne dziwne produkty.


czwartek, 2 czerwca 2016

Co to jest ksylitol?

Czyli parę tajemnic, o jakich nie powiedzą wam w sklepikach ze zdrową i naturalną żywnością...

Na pomysł tego wpisu naprowadziły mnie pastylki na kaszel. Gdy przeglądałem dostępne w aptece znalazłem też takie, które chwaliły się że nie zawierają cukru. Zajrzałem więc na skład gdzie jako główny środek słodzący wymieniono ksylitol. To, samo w sobie, nie było jeszcze zaskakujące, jednak producent uznał za potrzebne uspokojenie klienta, tak aby nie zaniepokoił się tą trudną nazwą i w nawiasie wyjaśnił "ekstrakt z kory brzozy". I w tym problem, że składnik ten jest akurat takim ekstraktem, jak wódka sokiem...

Zacznijmy może od najbardziej podstawowej rzeczy - ksylitol nie jest cukrem. Więc pisanie wszędzie, we wszystkich reklamach, że to "cukier brzozowy" jest błędem. Na właściwy trop powinna naprowadzać nas już nazwa - końcówka -ol jest właściwa dla alkoholi, i faktycznie, ksylitol należy do grupy alkoholi cukrowych.
Typowy cukier to cząsteczka nasycona będąca łańcuchem węglowodorowym w którym każdy (lub prawie dla cukrów deoksy) węgiel jest przyłączony z grupą -OH, stąd wzór ogólny Cx(H2O)y i nazwa węglowodany, wydaje się bowiem sądząc po tym wzorze, jakby składały się z węgla i wody. Tym co odróżnia je od alkoholi wielohydroksylowych jest obecność grupy aldehydowej lub ketonowej, a więc z podwójnym wiązaniem węgiel-tlen C=O. Grupa ta wpływa na ich reaktywność oraz umożliwia im występowanie w formie pierścieniowej po utworzeniu hemiacetalu.




Jeśli teraz zredukujemy cukier tak, aby także tą grupę aldehydową lub ketonową zamienić w kolejną grupę -OH otrzymamy alkohol polihydroksylowy. Ze zredukowania glukozy powstaje sorbitol, także znany jako środek słodzący, ze zredukowanej mannozy mannitol. Możliwe jest też selektywne redukowanie wielocukrów. Ogółem różnym alkoholom cukrowym poświęcę jakiś osobny wpis, ale teraz zajmę się tym jednym. Natomiast ksylitol to produkt zredukowania ksylozy.

Ksyloza to cukier prosty zawierający pięć atomów węgla; glukoza i fruktoza zawierają ich sześć. W przyrodzie rzadko występuje swobodnie, najczęściej jest składnikiem hemiceluloz, będących budulcem ścian komórkowych roślin. Wiele połączonych cząsteczek ksylozy, czasem też arabinozy, tworzy łańcuchy nie tak długie i silnie połączone jak celuloza, stanowiące raczej spoiwo. Głównym wyróżnikiem jest łatwa rozpuszczalność w rozcieńczonych zasadach, dzięki czemu można je oddzielić od celulozy.
Hemicelulozy są w świecie roślinnym wszechobecne, spotykamy je w tkankach, szczególnie dużo w tych łykowatych i drewniejących. Są też obecne w drewnie zwłaszcza młodych drzew, przy czym im ich więcej tym bardziej jest miękkie i skłonne do pęcznienia, najwięcej bo do 30% zawiera ich drewno brzozy i buka. Aby otrzymać z tkanek ksylozę, najpierw trzeba oddzielić od nich hemicelulozy.
Rozdrobione tkanki roślinne traktuje się rozcieńczonymi zasadami, w których dobrze się rozpuszczają. Następnie zakwasza i poddaje hydrolizie bądź w warunkach silnie kwaśnych, bądź enzymatycznej. Po oczyszczeniu i wykrystalizowaniu otrzymujemy ksylozę. W czasie wojny Finowie pozbawieni dobrych źródeł cukru stosowali jako zamiennik właśnie ksylozę, która wprawdzie nie jest tak bardzo słodka jak cukier stołowy, ale w kraju gdzie burak cukrowy nie urośnie było to zawsze coś.
W Europie zwykle produkuje się ksylozę z drewna, mamy bowiem dość dobre źródła, natomiast na świecie są to łykowate części roślin, zwłaszcza łodygi kukurydzy, ale także wytłoki trzciny cukrowej, słoma z owsa lub ryżu a nawet łuski nasion bawełny. Często ksyloza jest spotykana pod nazwą cukru drzewnego, ale niekoniecznie brzozowego.

No dobra. Mamy już ksylozę. Co zrobić aby otrzymać z niej ksylitol? A no zredukować.
W przemyśle stosuje się głównie uwodornianie na katalizatorze niklowym [1] Robi się też próby z redukcją mikrobiologiczną przy pomocy pewnych gatunków drożdży lub pleśni, ale te nie mają takiego znaczenia.

Jako zamiennik cukru ksylitol ma zbliżoną słodkość do sacharozy i nie ma nieprzyjemnego posmaku, co zaś najważniejsze ma bardzo niski indeks glikemiczny a więc w bardzo małym stopniu przyczynia się do uwalniania insuliny i może być użyty w żywności dla diabetyków.
U niektórych zwierząt wykazuje wręcz przeciwne działanie - podany psom wywołuje na tyle silne wydzielenie insuliny, że może im grozić śmierć z powodu hipoglikemii; wystarczy już dawka rzędu 100 mg/kg psa. Było to dawniej przyczyną problemów z wprowadzeniem na rynek, ale dopiero potem badania pokazały że u ludzi ma zupełnie odmienny metabolizm i nie jest dla nich szkodliwy.

Jest dość wolno wchłaniany z jelita i większość jest przetwarzana przez bakterie jelitowe do krótkołańcuchowych kwasów tłuszczowych. W takiej formie metabolity ksylitolu mogą być wchłaniane i zużywane, w związku z czym wbrew temu co piszą niektóre strony nie jest to związek "bez kalorii"; wartość energetyczna to około 70% kaloryczności glukozy. Słabe wchłanianie w jelitach ma też swoje złe strony, może bowiem w zbyt dużych ilościach wywołać biegunkę osmotyczną, związaną z wydalaniem wody do treści jelit dla wyrównania stężenia, jednak organizm stopniowo adaptuje się do wchłaniania dzięki czemu po pewnym czasie można spożyć nawet kilkadziesiąt gramów bez złych skutków. Ponadto bakterie jelitowe mogą przetwarzać go nazbyt ochoczo doprowadzając do wzdęć.
Jak wykazują badania ze względu na to że nie jest metabolizowany przez bakterie w jamie ustnej nie przyczynia się do rozwoju próchnicy a nawet w pewnym stopniu ją hamuje wpływając na mineralizację szkliwa.

Czym więc nie jest ksylitol? Na pewno nie jest "ekstraktem z kory brzozy" - w tym przypadku producent pojechał po bandzie. Problematyczne są też reklamy opisujące, że jest otrzymywany z brzozy bez uściślenia w jaki sposób. W efekcie wielu ludzi wyobraża sobie, że występuje w drewnie, liściach lub soku i stamtąd jest po prostu wymywany, parę razy widziałem domysły, że krystalizuje się go z soku brzozowego w związku z czym sok taki propaguje się przypisując mu jego właściwości, a nawet domysły, że to po prostu wysuszony sok z brzozy (w rzeczywistości sok brzozy zawiera głownie sacharozę i glukozę[2]). W dodatku producenci skrzętnie omijają w reklamach inne źródła, jak wspomniane łodygi kukurydzy czy słoma owsiana, bo brzoza budzi lepsze skojarzenia, brzmi bardziej dziko i naturalnie.
Inny problem to reklamy opisujące że ksylitol jest składnikiem "występującym w naturze" czy wręcz "naturalnym" - faktycznie, występuje w naturze, szczególnie dużo (ok. 1%) jest go w owocach jagodowych i niektórych warzywach, ale nie stamtąd się go otrzymuje. A akurat ten sprzedawany z sklepach jest otrzymywany z drewna które go nie zawiera po dwuetapowym procesie, więc w najlepszym razie jest produktem półsyntetycznym. Niestety kult naturalności i przekonanie że wszystko co sztuczne musi być złe powodują, że dla większych zysków producenci starają się mniej lub bardziej oszukać klientów.

Jako ciekawostkę dodam na koniec, że po znitrowaniu można z ksylitolu zrobić całkiem niezły materiał wybuchowy. To tak a'propos argumentacji "to musi być złe bo ma złe zastosowania".
-------------
Źródła:
* https://en.wikipedia.org/wiki/Xylitol
https://www.dcnutrition.com/miscellaneous/Detail.CFM?RecordNumber=695
* http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/2e_XIVIA_White_Paper.pdf

[1] http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322003000300006
[2] http://luczaj.com/publikacje/2014%20Luczaj%20Bilek%20Stawarczyk.pdf

Polecam obszerny artykuł na temat ksylitolu, nie znalazłem go gdy szukałem informacji do swojego a dużo uzupełnia:
 http://pinkcake.blox.pl/2015/02/Ksylitol-bialy-oczyszczony-nienaturalny.html

czwartek, 19 maja 2016

Sita molekularne

Z sitami molekularnymi student chemii zwykle spotyka się na pierwszych pracowniach laboratoryjnych, gdzie zawsze przy ogrzewaniu cieczy do wrzenia upomina się go "ale najpierw wrzuć do kolby sita molekularne" mające postać małych, twardych kuleczek. I bardzo możliwe, że aż do końca studiów będzie znał tylko takie ich zastosowanie. Niemniej co niektórych może jednak zastanowić, czym też są i czemu nazywa się je sitami, skoro wyglądają raczej jak małe granulki jakiejś masy ceramicznej?
Sita molekularne to granulki o tak dobranym składzie i metodzie produkcji, że są bardzo porowate, zaś te pory mają określoną wielkość pozwalającą wnikać wgłąb materiału cząsteczkom odpowiednio małym, zatrzymując cząsteczki za duże. Po prostu tylko cząsteczki mniejsze niż średnica poru będą w niego wchodzić i tym samym będą "odsiewane" od większych. Z tego też powodu najczęściej używa się sit do oddzielania niepożądanych, małocząsteczkowych zanieczyszczeń od cieczy i gazów.

Materiałem budującym sito molekularne są najczęściej syntetyczne minerały podobne do zeolitów posiadające w strukturze pory i kanały o dobrze zdefiniowanej wielkości. Najściślejsze mają pory o średnicy 3,4 i 5 Angstremów, czyli odpowiednio 0,3; 0,4 i 0,5 nanometra. Większe pory mają sita z porowatego szkła od 10 Å w górę. Sita o porach od 20 do 500 Angstremów mogą być stworzone z krzemionki koloidalnej, a te o jeszcze większych z krzemionki mezoporowatej. Ponadto w podobnym celu użyty może być węgiel aktywowany i niektóre porowate tworzywa sztuczne.
Generalnie więc w większości są to materiały niereaktywne, o dobrej wytrzymałości chemicznej i termicznej.

Jakie jest główne zastosowanie? Osuszanie.
 Cząsteczka wody jest bardzo mała, szerokość na jaką odsunięte są atomy tlenu to 1,6 A, dlatego dość łatwo wchodzi w kanały porowatego materiału. Dodatkowo glinokrzemiany dość chętnie wiążą wodę czy to wiązaniami wodorowymi w grupach Si-H czy to przez przyciąganie do jonów.  Dzięki temu po dodaniu sit do materiału normalnie słabo adsorbowanego, jak olej mineralny czy gaz ziemny, woda jest skutecznie odciągana.
Najdrobniejsze sita 3A mogą odciągać wodę od alkoholu i rozpuszczalników, których cząsteczki są zbyt duże aby wnikać w ich strukturę. Jest to jeden ze stosunkowo prostych sposobów uzyskania bezwodnego alkoholu - zwykle sprzedawany 95% alkohol zasypuje się odpowiednią ilością sit (pochłaniają wodę do 15-20% masy własnej) i zostawia w szczelnym pojemniku na kilkanaście godzin, potem odsącza lub destyluje aby oddzielić od pojawiającej się mineralnej zawiesiny.

Większe sita 4A i 5A mogą też wchłaniać alkohol etylowy, etan, eten i bywają używane do oddzielenia ich śladów z wielkocząsteczkowych rozpuszczalników. Chętnie korzysta z nich przemysł rafineryjny. Służą do usuwania z gazu ziemnego wody, kwasu mrówkowego, tlenków siarki, siarkowodoru a w odpowiednich warunkach też dwutlenku węgla. Jest to o tyle ważne, że nawet niewielkie ilości wody mogą zapychać instalacje podczas przetaczania gazu skroplonego, oraz wpływają korozyjnie na gazociągi.
Odmiany o porach 10-15 A mogą oddzielać węglowodory aromatyczne od ciekłych węglowodorów, a także służyć do rozdziału gazów. Odmiany mezoporowe, powyżej 100 A, mogą być użyte do rozdziału biomolekuł i krótkich peptydów.
Sita o odpowiednio dobranym składzie działają też jako wymieniacze jonowe, mogą pochłaniać z wody i ścieków metale ciężkie, chętnie też chłoną amoniak i jony amonowe.

Obok granulek żelu krzemionkowego sita molekularne są też jednymi z najczęściej używanych pochłaniaczy wilgoci w opakowaniach leków, żywności i elektroniki.

Jako materiał dla wytwarzania sit molekularnych najczęściej używa się zeolitów, bądź to naturalnych bądź otrzymywanych sztucznie. Sama nazwa "zeolit" znaczy dosłownie "wrzący kamień" i wywodzi się z ciekawej właściwości zbitych form. Aby z uwodnionego zeolitu usunąć wodę musimy go ogrzewać do odpowiednio dużej temperatury przez pewien czas. Jak zauważył  pod koniec XIX wieku szwedzki mineralog Axel Frederik Cronstedt, proces odwrotny po polaniu wodą dobrze wysuszonego minerału przebiegał z wydzieleniem na tyle dużej ilości ciepła, że powstawała para a woda którą go polano zapieniła się.
Zeolity powstają najczęściej w skałach wulkanicznych i piroklastycznych w wyniku reakcji roztworów bogatych w krzem, glin i kationy alkaliczne z zasadami, często w warunkach hydrotermalnych. Krystalizują w pustkach skalnych i kanałach tworząc skupienia włókniste, szczotkowate lub kuliste. Mogą też powstawać jako spoiwo między ziarnami osadów zagrzebanych na dużej głębokości. Obecnie najwięcej zeolitów wydobywa się w Chinach, Korei Południowej i Japonii, w Europie najwięcej wydobywa ich Słowacja.

Jednak naturalne zeolity nie nadają się do niektórych zastosowań, głównie z powodu obecności zanieczyszczeń, stąd też zaczęto produkować je syntetycznie.
Produkcja generalnie rzecz biorąc jest dość prosta - strukturalnie są to klatkowe glinokrzemiany z domieszką kationów metali alkalicznych. Do syntezy bierze się więc żel wodny zawierający tlenek glinu i łączy ze szkłem wodnym czyli rozpuszczalnym w wodzie krzemianem sodu. Mieszaninę alkalizuje się wodorotlenkiem sodu lub potasu aby spolimeryzować powstające glinokrzemiany. Wielkość i układ porów zależy od rodzaju kationu alkalicznego, stającego się "rusztowaniem" dla pierścienia glinokrzemianowego odpowiedniej wielkości, toteż mieszanina domieszkowana jest odpowiednimi kationami, w tym także organicznymi jak tetraetyloamoniowy.
Teraz gęstniejący żel jest mieszany i ogrzewany w odpowiednich warunkach. Przy czym te "odpowiednie warunki" to w istocie klucz do sukcesu. Proces nie może przebiegać zbyt szybko bo powstaną nam po prostu zbite kryształy. Zależnie od stosunku krzemu do glinu, obecności metali alkalicznych, odczynu mieszaniny, rodzaju kationu stanowiącego wzorzec, szybkości procesowania, temperatury i innych czynników otrzymujemy zeolity o różnych strukturach. Jak na razie opisano ponad 250 struktur zeolitowych a wciąż nie jest to koniec.
Atomy podczas krystalizacji organizują się w klatkowate "bloczki" z których układana jest sieć. Połączone wielościany o strukturze sodalitu tworzą pomiędzy sobą kanały złożone z pierścieni. Rodzaj struktury determinuje wielkość pierścieni a co za tym idzie wielkość porów.
Po przeprowadzeniu procesu w "odpowiednich" warunkach otrzymujemy wilgotną masę drobnych cząstek zeolitu, która następnie jest granulowana lub wyciskana do formy pręcików i suszona.

Oprócz usuwania wody i innych małocząsteczkowych zanieczyszczeń zeolity znalazły szerokie zastosowanie w zmiękczaniu wody, mogą bowiem pochłaniać i wiązać jony wapnia i magnezu. Akwaryści powinni kojarzyć zeolity w takim zastosowaniu. Znaleźć je możemy w ekologicznych proszkach do prania, gdzie zastępują używane zwykle do zmiękczania fosforany, które trafiając do ścieków wywoływały przenawożenie wód i zakwity glonów. Granulki sit molekularnych są też używane do wzbogacania podłoża, długo bowiem trzymają wilgoć oraz mogą stopniowo uwalniać wchłonięte nawozy.
Inne zastosowanie to katalizatory zwłaszcza w krakingu ropy naftowej. Podejmowane są też próby użycia jako nośniki leków. Ze względu na wysoką energię hydratacji i możliwość zregenerowania wilgotnych sit, zaczęto używać ich także do długotrwałego przechowywania ciepła - sita są suszone przy pomocy ciepła na przykład z kolektorów słonecznych. Zamknięte w szczelnym opakowaniu nie tracą mogą być przechowywane dość długo, a pod wpływem wody ponownie wydzielają ciepło.

Jak jednak mają się te właściwości do zastosowania sit w laboratoriach podczas ogrzewania cieczy?

Stan wrzenia to sytuacja gdy ciecz pod wpływem wysokiej temperatury jest w stanie przechodzić w parę w całej objętości, wytwarzając bąble gazu. W praktyce jednak powstanie pęcherzyka ot tak wewnątrz cieczy jest mało prawdopodobne. Najpierw cząsteczki cieczy muszą zostać rozepchane na boki, gdy utworzy się faza gazowa na pęcherzyk działa zarówno ciśnienie hydrostatyczne jak i napięcie powierzchniowe. W efekcie bardzo małe pęcherzyki odczuwają ciśnienie większe od atmosferycznego, to hamuje parowanie wody do wnętrza pęcherzyka a ten może zaniknąć zanim nie stanie się na tyle duży aby wypłynąć na powierzchnię.
Sytuacja zostaje bardzo ułatwiona gdy podgrzana woda zetknie się z nierówną, chropowatą powierzchnią, wtedy ciśnienie działa na powstający przylegający pęcherzyk tylko od jednej strony, dzięki czemu łatwiej jest mu urosnąć. Analogiczna sytuacja dotyczy wydzielania się gazu z wody mineralnej - pęcherzyki powstają na ściankach i wybiegają stale z pewnych sprzyjających punktów.

Inną sytuacją która bardzo ułatwia wrzenie są bąbelki powietrza, stanowiące "zarodek" bąbelków pary. W przypadku materiałów porowatych mogą być to zarówno bąbelki przyczepione do nierównej powierzchni jak i zawarte wewnątrz materiału, stąd właśnie użycie różnych porowatych materiałów w charakterze "kamyków wrzennych". Mogą być to kawałki porcelany (na pracowni magisterskiej używałem drobnych okruchów rozbitej filiżanki), mogą to być granulki ceramiczne i mogą to być też sita molekularne, które zawsze gdzieś tam stoją na pracowni.

A dlaczego w takim razie musimy ułatwiać wrzenie?
Cóż, to utrudnienie powstawania pierwszych pęcherzyków powoduje, że gdy podgrzewana ciecz jest bardzo czysta i ogrzewamy ją w gładkim naczyniu, możliwe staje się jej przegrzanie powyżej temperatury normalnego wrzenia. Wodę można w ten sposób ogrzać do temperatury 120-130 *C, w sprzyjających warunkach i przy szybkim ogrzewaniu aż do 160 stopni.
W takiej sytuacji drobne zaburzenie, w rodzaju pierwszego pęcherzyka, zamieszania czy wibracji może spowodować dość gwałtowne zawrzenie, często połączone ze spienieniem się i wychlapaniem naszej cieczy. Pół biedy gdy ogrzewana mieszanina pójdzie chłodnicą, ale równie dobrze może prysnąć na rękę eksperymentatora. Problem ten upowszechnił się w ostatnim czasie wraz z mikrofalówkami - wiele osób używa ich do podgrzewania wody na herbatę. Jeśli użyją do tego czystej wody i wstawią wodę w gładkiej szklance, woda może nie zawrzeć mimo, że będzie bardzo gorąca. Wrzucenie do niej teraz herbaty i cukru może spowodować wytryśnięcie z kubka i poparzenia.



 Bez kamyków wrzennych ciecze wrą nieregularnie, z uderzeniami gwałtowniejszych wrzeń co jakiś czas, i właśnie dlatego dla bezpieczeństwa i większej kontroli nad procesem należy wrzucać do kolby dwie-trzy granulki sit lub kawałki porcelany.

sobota, 30 kwietnia 2016

Chemiczne wieści (6.)

 Dzisiejszy odcinek wypadł bardziej kwantowo-fizyczny. Bo tak.

Czterowymiarowy kryształ?
Tlenki żelaza choć znane od wieków, wciąż budzą zainteresowanie technologów i fizyków i niekiedy nadal daje się odkryć nowe, ciekawe ich właściwości. W 2011 roku doniesiono o odkryciu, że mieszanina tleneku żelaza II i żelaza II/III (FeO+Fe3O4) poddany działaniu wysokiego ciśnienia zamienia się w unikalny tlenek Fe4O5. Faza ta wykazywała silne właściwości ferrimagnetyczne podobne do magnetytu.
Wiadomo było już, że magnetyt w niskich temperaturach ulega przejściu fazowemu II rodzaju, w wyniku którego atomy o różnym stopniu utlenienia tworzą równoległe struktury (Wervey phase). W typowym magnetycie atomy żelaza II i żelaza III są przemieszane statystycznie, nie tworząc regularnych struktur, zaś elektrony mogą przeskakiwać od jednego jonu do drugiego dzięki czemu materiał wykazuje przewodność elektryczną. Po przejściu fazowym następuje samoorganizacja - atomy o danym stopniu utlenienia tworzą w sieci krystalicznej struktury liniowe lub płaszczyzny.

 W przypadku magnetytu wiązało się to z utrudnieniem ruchu elektronów i wzrostem oporu, ale w innych materiałach może to doprowadzać do pojawiania się nadprzewodnictwa, ferromagnetyczności lub gigantycznego magnetooporu stosowanego dziś w elektronicznych nośnikach danych.
Nic też dziwnego, że postanowiono sprawdzić czy w podobny sposób zachowa się nowy materiał. Rosyjski zespół stwierdził zachodzenie podobnej przemiany poniżej temperatury 150 K. Materiał zmieniał właściwości magnetyczne a opór elektryczny rósł o dwa rzędy wielkości. Problematyczne okazało się natomiast przypisanie mu określonej struktury. Zakładano, że mamy do czynienia z takim samym zjawiskiem organizacji stopni utlenienia, ale wyniki pomiarów nie dawały się złożyć w prosty model. Wyglądało na to, że struktury atomów o jednakowym stopniu utlenienia falują i statystycznie może się wydawać, że są rozmieszczone przypadkowo.
Porządek pojawił się dopiero gdy symulowano rozkład ładunków w przestrzeni czterowymiarowej. Z tego też powodu informacje o tym odkryciu często powtarzają że odkryto "czterowymiarowy kryształ". W tym przypadku chodzi jednak jedynie o matematyczny model rozkładu ładunków, opisywany funkcją nie dającą rozwiązania w normalnej przestrzeni.[1]

Kwantowa woda
Nietypowe zachowanie się wody zamkniętej w wąskich kapilarach odkryli właśnie amerykańscy badacze. Badali oni właściwości wody w kapilarnych kanałach struktury berylu, ważnego minerału magmowego, przy pomocy techniki rozpraszania neutronów. Średnica kanału na tyle ograniczała cząsteczki, że w przekroju mieściła się tylko jedna. Zamiast jednak struktur cząsteczek uzyskali nietypowe, heksagonalne pierścienie. Sygnał obecności atomu tlenu pojawiał się w sześciu miejscach, a każdego z dwóch wodorów także w sześciu. Ponieważ zaś sześć cząsteczek by się w przekroju kanału nie zmieściło, zaś dla tej jednej bariera energetyczna obrotu jest zbyt duża aby wynik wywoływało ustawianie się jej w różnych pozycjach w trakcie badania, jako wyjaśnienie tych obserwacji zaproponowali nietypowy model - jest to w istocie nadal jedna cząsteczka, tylko kwantowo interferująca sama ze sobą.[2]

Jedną z konsekwencji teorii kwantowej była hipoteza de Brogile'a, że każdej cząstce materialnej można przypisać właściwości falowe które wpływają na jej oddziaływania i zachowania. Za sprawą tych właściwości obserwujemy dyfrakcję cząstek na dwóch szczelinach lub siatkach dyfrakcyjnych, powodującą że prawdopodobieństwo znalezienia się cząstki z danym miejscu zależy od wzoru jej "fali materii". Przepuszczając odpowiednio dużo cząstek przez szczeliny i badając w jakie miejsce na detektorze uderzą, otrzymujemy w końcu wzór właściwy interferującym falom.
Jedną ze szczególnie interesujących konsekwencji tego zjawiska są kwantowe miraże, czyli wzory oddziaływań, jakie tworzy cząstka zamknięta w niewiele od niej większym ograniczeniu przestrzennym. Wewnątrz okręgu ułożonego z atomów na podłożu powstaje wzór podobny do fal na wodzie z centralną górką stanowiącą złudzenie istnienia tam jakiegoś atomu:


Po umieszczeniu atomu w jednym z ognisk elipsy, w drugim ognisku pojawia się jego słaby miraż:


Jak się wydaje w opisywanym przypadku zachodzi coś podobnego. Cząsteczka wody wewnątrz niewiele od niej większego, heksagonalnego kanału interferuje. Próby określenia położenia jej atomów kończą się więc stwierdzeniem sześciokątnego wzoru na który składają się zagęszczenia fal prawdopodobieństwa obecności atomu w tej niewielkiej przestrzeni. Poprzednio udało się zmierzyć podobny efekt dla atomów wodoru, ale woda to już zupełnie inna sprawa. Pory tych rozmiarów (4 A) występują w minerałach budujących skorupę ziemską, zatem kwantowy efekt może mieć znaczenie dla modelowania właściwości gleby i skał.

Nowy rodzaj wiązania?
Obliczenia kwantowomechaniczne dokonane przez badaczy z amerykańskiego Southern Methodist University w Dallas wskazują na istnienie jeszcze jednego rzadkiego rodzaju wiązania chemicznego - jest to odmiana wiązania wodorowego z oddziaływaniem między atomem wodoru połączonym z borem a układem aromatycznym. Znane były tego rodzaju połączenia dla układów w których wodór połączony był z węglem i azotem, mające pewne znaczenie w biologii molekularnej, jednak dotychczas wydawało się, że nie powinny zachodzić dla boranów. Bor ma mniejszą elektroujemność niż wodór, toteż wiązanie między nimi jest tak spolaryzowane, że na protonie pojawia się lekki ładunek ujemny. Bardziej naładowany elektronami wodór powinien być więc odpychany przez pełen elektronów pierścień aromatyczny.
Z drugiej strony związki boru są często połączeniami elektrono-deficytowymi, z pojawiającymi się wiązaniami trójcentrowymi a w takiej sytuacji na wodorze powinien pojawić się cząstkowy ładunek dodatni.

@ American Chemical Society
Wedle ostatnich wyliczeń diborany oraz  karborany powinny na tej zasadzie tworzyć słabe wiązania B-H--Ar o długości 2,65-2,50 A . Pewnym potwierdzeniem tych przewidywań może być struktura pewnego kompleksu irydu, w którym między wodorem grupy karboranowej a pierścieniem z grupy trifenylometylowej występuje trudne do wytłumaczenia w inny sposób zbliżenie na zbliżoną odległość.[3]

---------
[1] Ovsyannikov V. S.; Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016; DOI: 10.1038/NCHEM.2478
[2] Kolesnikov A.I. et al.  Quantum Tunneling of Water in Beryl: A New State of the Water Molecule. Physical Review Letters, 2016; 116 (16) DOI: 10.1103/PhysRevLett.116.167802
[3]  X Zhang et al, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding
J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b01249

piątek, 22 kwietnia 2016

Reakcja nie całkiem charakterystyczna

Czyli dłuższa anegdota o odkryciu pewnego związku.

Wraz z rozwojem przemysłu w XIX wiecznej Europie, w tym maszyn parowych i pieców hutniczych, duże znaczenie jako paliwo zaczął odgrywać węgiel kamienny. Dla pewnych zastosowań korzystniejszym niż surowe paliwem był koks, otrzymany przez ogrzewanie węgla bez dostępu powietrza tak, że ulatywała zeń woda i lotnie związki. Koks, o wyższej wartości opałowej, zużywano głównie do wytopu stali; gazy palne zużywano do oświetlania ulic w latarniach i jako gaz do kuchenek; wykraplana woda pogazowa zawierająca amoniak była zużywana do produkcji nawozów sztucznych.

 Jedynym produktem ubocznym jaki nie dawał się wprost zastosować była smoła pogazowa, często po prostu wylewana albo po oddzieleniu najbardziej lotnych składników używana do impregnacji drewna. Szybko zainteresowali się nią chemicy świadomi, że jest mieszanką wielu interesujących substancji. Stwierdzili oni na przykład, że przez destylację surowej smoły można otrzymać frakcje o rozmaitych właściwościach. Z jednych odzyskiwano naftalen, z innych dawało się wyprodukować fenol, zaś najlżejsza i niskowrząca frakcja dawała się zastosować jako rozpuszczalnik i olej oświetleniowy. Frakcja ta stanowiła też zresztą uciążliwe zanieczyszczenie gazu koksowniczego używanego do oświetlenia, zauważalne zwłaszcza gdy doprowadzany gaz był jeszcze ciepły. Wykraplała się na chłodnych kloszach latarń i przemieszana z sadzą zbierała na dnie.
Tam też na lepkie zanieczyszczenie zwrócił uwagę w 1825 roku Michael Faraday, który będąc bardzo praktycznym człowiekiem podjął się jej destylacji, chcąc otrzymać palny olej. Przydatnym produktem okazała się jedna z frakcji, o temperaturze wrzenia 80°C. Była to rzadka, lekko żółtawa ciecz spalająca się bardzo kopcącym płomieniem i będąca dobrym rozpuszczalnikiem. W następnych dekadach nauczono się wyodrębniać ją na duża skalę ze smoły pogazowej, a ze względu na obfite występowanie w benzolu, cieczy absorbowanej z gazu koksowniczego na stałych pochłaniaczach, nazwano ją benzenem.

Benzen odegrał dużą rolę w rozwoju chemii organicznej. To od niego pewną grupę niereaktywnych związków, często posiadających charakterystyczny zapach, nazwano związkami aromatycznymi. W tym wczesnym okresie duży problem sprawiało chemikom określenie jego struktury cząsteczkowej. Całkiem niedawno przyjęło się uważać, że pierwiastki składają się z atomów, a związki ze złożeń tych atomów w drobne całostki, nazwane cząsteczkami, o określonej budowie i układzie połączonych atomów. Jedyną informację o przypuszczalnym składzie cząsteczki stanowiły stosunki ilościowe pierwiastków składowych. Wiedząc w jakich ilościach łączą się ze sobą atomy, należało domyśleć się jaką prawdopodobnie tworzyły ze sobą strukturę.
Chemikiem który włożył w tą dziedzinę najwięcej, był opisywany już tutaj August Friedrich Kekule. On to po raz pierwszy na podstawie swych badań ustalił, że węgiel w związkach organicznych łączy się z maksymalnie czterema innymi atomami. W późniejszym okresie zastanawiając się jak połączyć ze sobą budulcowe atomy, doszedł do wniosku, że atomy węgla w bardziej skomplikowanych związkach muszą łączyć się tworząc łańcuchy. Wedle opowiadanej przezeń po latach anegdoty, myśl tą podsunął mu sen w którym dostrzegł tańczące atomy, które w pewnym momencie zaczęły się bawić w lokomotywę.
Pomysł ten nie dawał się jednak zastosować do niektórych związków, czego przykładem był benzen, złożony z węgla i wodoru w stosunku 1:1, i zawierający najwyraźniej sześć węgli. Rozwiązanie podsunął mu kolejny sen, w którym tańczące atomy utworzyły węża, a ten w pewnym momencie uchwycił swój ogon i w takiej formie wirował mu przed oczami. No tak - załóżmy że atomy są połączone w pierścień i mają wolną możliwość przyłączenia jeszcze tylko po jednym, a skład będzie się zgadzał.

Po upływie kolejnych lat chemicy coraz śmielej poczynali sobie z tworzeniem nowych pochodnych tego związku, aż w roku 1879 słynny chemik Bayer, założyciel zakładu produkującego między innymi Aspirynę, zauważył bardzo specyficzną reakcję - gdy wytrząsnął benzen ze stężonym kwasem siarkowym i dodał izatyny, żółtopomarańczowej substancji otrzymywanej z indygo, powstawało wyraźne niebieskie zabarwienie, zauważalne nawet przy niewielkich ilościach substancji. Wyglądało zatem na to, że odkryto prostą i szybką reakcję charakterystyczną, pozwalającą wykrywać benzen.

Odkrycie szybko zostało uznane i niektórzy postępowi profesorowie chemii zaczęli uczyć o tej reakcji na uniwersytetach. Jednym z nich był profesor Wiliam Weith wykładający chemię na uniwersytecie w Zurychu. Miał on specjalny lektorat poświęcony związkom aromatycznym, podczas którego pokazywał najbardziej charakterystyczne reakcje. Niestety na początku 1882 roku zmarł, toteż zajęciami podczas wiosennego semestru zajął się jego bliski przyjaciel Viktor Meyer.
Gdy przygotowywał się do zajęć polecił swojemu asystentowi aby przygotował mu próbkę benzenu. Tylko miał być czysty, tak aby pokaz poszedł bez problemów.
W dniu wykładu asystent dostarczył odpowiednią ilość związku. Meyer omówił historię i strukturę benzenu, po czym przeszedł do omawiania reakcji. Można wyobrazić sobie jak mówi studentom, że gdy teraz wytrząsie benzen ze stężonym kwasem i doda izatyny, to zobaczymy piękny niebieski kolor. Następnie tak jak mówił wytrząsa w próbówce benzen i stężony kwas, dodaje izatynę i... nic się nie dzieje. Powtarza reakcję, bo może coś akurat źle zrobił, ale nic nie pomaga. No cóż, tak się czasem zdarza, powtórzymy na następnych zajęciach.

Po skończonym wykładzie zwrócił się zatem do asystenta z delikatnym zapytaniem, co on u licha mu na te zajęcia przygotował. Bo jeśli nie szyny i nie izatyna, to benzen był zły. Asystent, znany później Traugott Sandmeyer bronił się że ależ skąd, przygotował benzen czysty, jak profesor chciał, wszystko wedle przepisu z dekarboksylacji kwasu benzoesowego bo tylko wtedy dawało się otrzymać zupełnie czysty. To już było zastanawiające. Jeszcze tego samego dnia Meyer wziął komercyjnie dostępny benzen otrzymywany z powęglowego benzolu, wytrząsnął z kwasem, dodał izatyny i otrzymał zgodnie z opisem Bayera piękny niebieski barwnik, znany jako indofenina.
Nie wiedząc co z tym faktem począć, wziął większą ilość komercyjnego benzenu, wytrząsnął z kwasem, oddzieloną warstwę kwasową zobojętnił stwierdzając, że wydzieliła mu się rzadka, lekko żółtawa ciecz o charakterystycznym zapachu, która wydawała się identyczna z benzenem. Meyer sądził zatem, że benzen występuje w dwóch formach, jednej mało aktywnej i drugiej "zaktywizowanej" i wchodzącej w reakcję barwną. Powtórzenie reakcji z otrzymaną cieczą pozwoliło mu na wytworzenie większej ilości niebieskiego barwnika, który wysłał do zbadania Bayerowi. Ten orzekł, że faktycznie jest to indofenina, ale zarazem w analizie elementarnej wyszło mu, że związek zawiera siarkę, której nie było w izatynie. Dalsze testy "aktywizowanego benzenu" pokazały, że musi być to substancja różna od benzenu. W odróżnieniu od niego nie krystalizowała w lodzie, i wrzała w temperaturze 84 stopni, w porównaniu z 80 stopni dla benzenu zupełnie czystego. Wreszcie analiza chemiczna wykazała, że jest to związek zawierający jeden atom siarki, cztery atomy węgla i cztery wodoru.
I tak Meyer odkrył Tiofen.

Odkrycie tiofenu zelektryzowało ówczesnych chemików. Okazało się że przez kilka dekad nie zauważyli, że benzen ze smoły węglowej jest mieszanką dwóch związków, przy czym ten drugi, tiofen, stanowił w niektórych partiach do 10%

Tiofen należy do grupy pięciokątnych związków aromatycznych, w których aromatyczność nadaje im zdelokalizowany układ sześciu elektronów - dwóch pochodzących z wiązań podwójnych na części węglowej i jednej wolnej pary pożyczonej z heteroatomu. Pełnowęglowy odpowiednik czyli cyklopentadien nie jest aromatyczny, a dodatkowo efekty antyaromatyczne tylko zmniejszają jego trwałość. Dążąc do utrwalenia chętnie odszczepia jeden wodór tworząc karboanion cyklopentadienylowy który już jest aromatyczny.
Podstawienie jednego węgla w tym układzie heteroatomem posiadającym wolną parę elektronową tworzy aromatyczną cząsteczkę obojętną. Gdy tym atomem jest tlen, otrzymujemy furan, gdy azot jest to pirol. Udało się także otrzymać analogiczne cząsteczki z niektórymi metalami i półmetalami, takie jak silol z krzemem, arsol z arsenem, stannol z cyną a nawet tytanol z tytanem. Zachowują one częściową aromatyczność, ale znacznie osłabioną.

Dziś możemy już odpowiedzieć na pytanie co takiego zachodziło w próbówce Meyera i co właściwie wykrywała reakcja. Tiofen w odróżnieniu od benzenu jest bardziej reaktywny. Tyle samo bo sześć elektronów stłoczonych jest jednak na mniejszym bo pięcioatomowym pierścieniu. Większe zagęszczenie ładunku (oraz karboanionowe struktury mezomeryczne) powoduje, że chętniej reaguje z czynnikami elektrofilowymi. Takim czynnikiem może być też proton uwalniany przez odpowiednio silny kwas.
Podczas wytrząsania benzolu ze stężonym kwasem, tiofen ulegał protonowaniu i w formie jonowej przechodził do warstwy kwasowej. Dalsza reakcja z izatyną jest dość skomplikowana i nie zupełnie rozgryziona, zaczyna się prawdopodobnie od sprotonowania izatyny i wytworzenia formy z ładunkiem dodatnim, która jako elektrofil atakuje cząsteczkę tiofenu. Powstające połączenie dimeryzuje i ulega przegrupowaniu tworząc niebieski barwnik:
Indofenina występuje w kilku izomerach różniących się konformacją trans/cis na wiązaniach podwójnych, w zasadzie więc powstaje mieszanina izomerów. Reakcja ma dziś jeszcze zastosowanie do oznaczania niektórych mało podstawionych pochodnych tiofenu.

Jakie zastosowania ma tiofen?
Jednym które samo się narzuca jest produkcja barwników. Chętnie jest też używany w syntezach nowych leków. Może zastępować pierścień benzenowy bez utraty właściwości leku, a dzięki łatwiejszemu podstawieniu łatwiej jest wytworzyć różnorodne pochodne.
Najciekawszym zastosowaniem jest jednak wytwarzanie politiofenu, polimeru mogącego przewodzić prąd elektryczny.




Spolimeryzowany tiofen po utlenieniu staje się przewodnikiem typu metalicznego. Utleniony tylko częściowo stanowi natomiast organiczny półprzewodnik. Możliwe jest więc wytworzenie na przykład przezroczystej folii przewodzącej prąd, co powinno znaleźć zastosowanie w ogniwach słonecznych. Szersze zastosowanie znalazła dobrze rozpuszczalna pochodna poli(etylenodioksytiofenu) (PEDOT-PSS), która dzięki przewodnictwu jest używana w powłokach antystatycznych, nie pozwalających na elektryzowanie się powierzchni.
Sam poli(etylenodioksytiofen) jest słabo rozpuszczalny w rozpuszczalnikach organicznych. Folie i przewody wytworzone z tego materiału są używane w elastycznych wyświetlaczach OLED.

------------
H. D. Hartough, The Chemistry of Heterocyclic Compounds, Thiophene and Its Derivatives,


* https://en.wikipedia.org/wiki/Thiophene
* https://en.wikipedia.org/wiki/Polythiophene

czwartek, 14 kwietnia 2016

Ostatnio w laboratorium (51.)

Ostatnio w laboratorium rozdzielałem ciemną, zesmołowaną mieszaninę poreakcyjną na kolumnie z wypełnieniem krzemionkowym. Eluent (chloroform/metanol) miał współczynnik załamania na tyle zbliżony do ziaren krzemionki, że całość wydawała się przezroczysta. Dzięki czemu bardzo ładnie było widać, jak mieszanina rozdziela się na poszczególne składniki, tworzące osobne prążki:

Nałożyłem trochę za dużo i kolumna się przeładowała, ale to o co mi chodziło udało się oddzielić.

poniedziałek, 4 kwietnia 2016

To już 5 lat.

No i właśnie mija piąty rok Nowej Alchemii.

Na początek podsumowanie statystyk:
- blog wyświetlono 675 tysięcy razy, w związku z czym od zeszłorocznego podsumowania przybyło 180 tysięcy obejrzeń. Szacuję że około 10% to wizyty botów.
- średnia dzienna przeglądalność sięgnęła poziomu 600 wyświetleń
- do artykułów dodano 972 komentarze, zatem od zeszłego roku przybyło 230, z czego jakieś
10-15 % to moje odpowiedzi.

W minionym roku największe zainteresowanie wywołały wpisy:
* Dlaczego pokrzywa parzy? - 6740 wyświetleń
* Soda na raka czyli ciastko z trucizną i komórka która gryzie - 5580 wyświetleń
* Cała tablica Mendelejewa w soli - 2222 wyświetlenia
* Dlaczego sód wybucha w wodzie? - 1400 wyświetleń
* Dziwne i zabawne nazwy związków chemicznych - 1370 wyświetleń
* Czarne czy zielone? - 1140 wyświetleń

Nadal nieustającym zainteresowaniem cieszy się wpis o ałunie.

Blog dorobił się też 121 obserwatorów, których korzystając z okazji pozdrawiam.

Jeśli chodzi o źródła wejść, w tym roku bardzo uaktywnił się pod tym względem Facebook. Polecanie co ciekawszych wpisów zwiększyło ilość wizyt. Ponadto oczywiście liczne były wejścia przez wyszukiwarkę, czasem z dość dziwnych, przypadkowych powodów, przykładowo kilka osób odnalazło tą stronę szukając hasła "zgnieciony liść", nie wiem czemu. Ostatnio pojawił się pewien skok aktywności wpisu o mieszaniu środków czystości, ze względu na pojawiającą się tam spekulację o wytwarzaniu nadtlenku acetonu w pewnych mieszankach, a to z powodu wzmianki w mediach, że taki skład ma materiał wybuchowy "matka szatana".

Jeśli chodzi o planowane wpisy, będę kontynuował obiecujący cykl Chemicznych Wieści, pojawią się też nowe wpisy z serii o truciznach. Planuję też kilka wpisów o kuchennych doświadczeniach pokazujących jak można w domowych warunkach przeprowadzać ciekawe reakcje chemiczne lub wytwarzać ciekawe materiały. Zobaczymy jak to będzie.